We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Bioprinting Studies How Cancer Cells Grow and Spread

By LabMedica International staff writers
Posted on 26 Feb 2019
Novel use of a three-dimensional (3D) bioprinting technique has created new ways to study how cancer cells grow and spread.

Investigators at the University of Minnesota (Minneapolis/St. More...
Paul, USA) have developed three-dimensional bioprinting techniques that have been adapted to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules.

Three-dimensional bioprinting combines cells, growth factors, and biomaterials to fabricate biomedical constructs that maximally imitate natural tissue characteristics. Generally, three-dimensional bioprinting utilizes the layer-by-layer method to deposit biological materials to create tissue-like structures. Emerging innovations include bioprinting of cells or extracellular matrix deposited into a three-dimensional gel layer by layer to produce the desired tissue or organ.

The technique described in the January 21, 2019, online edition of the journal Advanced Materials enabled the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level.

Vascularized tumor models were created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. In addition, the investigators described the benefits of using these metastatic models for drug screening by evaluating the anticancer efficacy of immunotoxins.

“This model is more consistent with what the body is like,” said senior author Dr. Angela Panoskaltsis-Mortari, professor of pediatrics at the University of Minnesota, “and, therefore, studying the effects of drugs with human cells at this level makes the results more meaningful and predictive of what will happen in the body.”

Related Links:
University of Minnesota


Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.