Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Microfluidic System Enables Early Cancer Diagnosis Using Simple Blood Tests

By LabMedica International staff writers
Posted on 31 Jul 2025

Circulating tumor cells (CTCs), which break off from primary tumors and travel through the bloodstream, pose a significant risk by forming secondary tumors in other organs. More...

Detecting and analyzing these cells can play a crucial role in diagnosing and treating various cancers. However, the efficient capture of CTCs from blood has proven to be difficult, especially given the complexities and costs associated with incorporating antibodies into micro-sized devices. Although microfluidic systems using antibodies have shown promise, incorporating antibodies into specific regions of microscale devices involves complex chemical processes, ultimately raising production costs and hindering scalability. Now, scientists have developed a simple, cost-efficient microdevice that can detect cancer cells from blood with high sensitivity.

This novel microfluidic diagnostic device, developed by researchers at Chiba University (Chiba, Japan), incorporates microcone arrays to enhance the capture of cancer cells from blood. The team fabricated the device by imprinting polycarbonate (PC) sheets with microcone arrays using thermal nanoimprint lithography (T-NIL), a heat-based microfabrication technique. These microcones, approximately 30 micrometers in size, were arranged in a hexagonal pattern and featured nanometer-scale surface roughness that allowed for efficient binding of anti-human epithelial cell adhesion molecule antibodies. The antibody-coated PC sheets were sandwiched between a glass slide and a flat plate to form microchannels. The scientists tested various orientation angles of the microcone arrays within the microchannels to evaluate their influence on cancer cell capture behavior.

During experimental testing, the microfluidic device successfully captured human breast cancer (MCF-7) and human lung cancer (A549) cells from blood samples. The findings, published in Lab on a Chip, show that the device maintained a capture efficiency of over 90% for MCF-7 cells even at high flow rates, particularly when microcone orientation angles were set at 15° or 30°. To further demonstrate the system’s diagnostic capability, the researchers also performed immunostaining using fluorescent dyes to label and observe specific proteins in the captured cells. The labeled cancer cells remained trapped within the microchannels and could be easily distinguished from normal cells under fluorescence microscopy. This diagnostic device presents a highly sensitive and minimally invasive approach to cancer detection. It may also aid in monitoring treatment efficacy and identifying cancer recurrence through simple blood tests.

"We hope that through our new microfluidic system, even simple blood tests can be utilized to aid in the early diagnosis of cancer. It may also be useful for verifying the effectiveness of cancer treatment and monitoring recurrence after treatment," said Professor Masumi Yamada, lead developer of the device.

Related Links:
Chiba University


New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
Pipette
Accumax Smart Series
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Urine samples can indicate lupus nephritis without the need for repeat and painful renal biopsies (Photo courtesy of Shutterstock)

Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients

Lupus is an autoimmune disorder that causes the immune system to attack the body’s own tissues and organs. Among the five million people living with lupus globally, nearly half develop lupus nephritis,... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.