We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

By LabMedica International staff writers
Posted on 11 Aug 2020
A genomics-based blood test can predict likelihood that a baby suffering hypoxia at birth will suffer serious nervous disorders such as cerebral palsy or epilepsy at a later stage of development.

Hypoxic ischemic encephalopathy has many causes and is essentially the reduction in the supply of blood or oxygen to a baby's brain before, during, or even after birth. More...
It is a major cause of death and disability, occurring in approximately two to three per 1000 births and causing around 20% of all cases of cerebral palsy.

Brain hypothermia, induced by cooling a baby to around 33 degrees Celsius for three days after birth, is a treatment for hypoxic ischemic encephalopathy. It has recently been proven to be the only medical intervention which reduces brain damage, and improves an infant's chance of survival and reduced disability.

Since a rapid and early diagnostic test to identify the encephalopathic babies at risk of adverse outcome has been lacking, investigators at Imperial College London (United Kingdom) have developed one.

The investigators theorized that a whole blood transcriptomic signature measured soon after birth would predict adverse neurodevelopmental outcome eighteen months after neonatal encephalopathy. To test this hypothesis, they performed next generation sequencing (NGS) on whole blood ribonucleic acid obtained within six hours of birth from the first 47 encephalopathic babies recruited to the Hypothermia for Encephalopathy in Low and middle-income countries (HELIX) trial. The study was conducted in Indian hospitals, where there are around 0.5-1.0 million cases of birth asphyxia per year. Blood was taken within six hours after birth, and the infants were followed until 18 months of age to identify those who developed neurodisabilities. Two infants with blood culture positive sepsis were excluded, and the data from remaining 45 were analyzed.

Results revealed that a total of 855 genes were significantly differentially expressed between the good and adverse outcome groups, of which Regulator of G-protein Signaling 1 (RGS1) and Structural Maintenance of Chromosomes Protein 4 (SMC4) were the most significant. Biological pathway analysis adjusted for gender, treatment (cooling therapy versus usual care), and estimated blood leukocyte proportions revealed over-representation of genes from pathways related to melatonin and polo-like kinase in babies with adverse outcome.

Senior author Dr. Sudhin Thayyil, professor of perinatal neuroscience at Imperial College London, said, "The results from these blood tests will allow us to gain more insight into disease mechanisms that are responsible for brain injury and allow us to develop new therapeutic interventions or improve those which are already available."

The study was published in the August 4, 2020, online edition of the journal Scientific Reports.


Related Links:

Imperial College London


Gold Member
Troponin T QC
Troponin T Quality Control
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Plasmodium Test
Plasmodium DNA Real Time PCR Kit
New
cDNA Synthesis Kit
Ultimate cDNA Synthesis Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: Ear wax could be a possible screening medium for Parkinson’s disease (Photo courtesy of 123RF)

Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules

Current tests for Parkinson’s disease (PD) rely heavily on clinical scales and neuroimaging, which are often subjective, expensive, and ill-suited for routine screening. Since most treatments only slow... Read more

Molecular Diagnostics

view channel
Image: Cord blood proteomics can identify biomarkers of early-onset neonatal sepsis (Photo courtesy of JCI Insight (2025). DOI: 10.1172/jci.insight.193826)

Umbilical Cord Blood Test Can Detect Early Sepsis in Preterm Infants

Diagnosing early onset sepsis (EOS) in preterm infants is particularly difficult due to the lack of specific clinical signs, leading to widespread use of antibiotics while awaiting culture results.... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: NGS can detect one tumor cell among a million healthy cells from a simple blood sample (Photo courtesy of Shutterstock)

New Tool Detects Breast Cancer Relapses Five Years in Advance

Relapse detection in patients with solid tumors—particularly hormone receptor-positive (HR+) breast cancer—remains a major clinical challenge, as many patients initially respond well to treatment but later... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.