We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

By LabMedica International staff writers
Posted on 11 Aug 2020
Print article
Structure of the RGS1 protein (Photo courtesy of Wikimedia Commons)
Structure of the RGS1 protein (Photo courtesy of Wikimedia Commons)
A genomics-based blood test can predict likelihood that a baby suffering hypoxia at birth will suffer serious nervous disorders such as cerebral palsy or epilepsy at a later stage of development.

Hypoxic ischemic encephalopathy has many causes and is essentially the reduction in the supply of blood or oxygen to a baby's brain before, during, or even after birth. It is a major cause of death and disability, occurring in approximately two to three per 1000 births and causing around 20% of all cases of cerebral palsy.

Brain hypothermia, induced by cooling a baby to around 33 degrees Celsius for three days after birth, is a treatment for hypoxic ischemic encephalopathy. It has recently been proven to be the only medical intervention which reduces brain damage, and improves an infant's chance of survival and reduced disability.

Since a rapid and early diagnostic test to identify the encephalopathic babies at risk of adverse outcome has been lacking, investigators at Imperial College London (United Kingdom) have developed one.

The investigators theorized that a whole blood transcriptomic signature measured soon after birth would predict adverse neurodevelopmental outcome eighteen months after neonatal encephalopathy. To test this hypothesis, they performed next generation sequencing (NGS) on whole blood ribonucleic acid obtained within six hours of birth from the first 47 encephalopathic babies recruited to the Hypothermia for Encephalopathy in Low and middle-income countries (HELIX) trial. The study was conducted in Indian hospitals, where there are around 0.5-1.0 million cases of birth asphyxia per year. Blood was taken within six hours after birth, and the infants were followed until 18 months of age to identify those who developed neurodisabilities. Two infants with blood culture positive sepsis were excluded, and the data from remaining 45 were analyzed.

Results revealed that a total of 855 genes were significantly differentially expressed between the good and adverse outcome groups, of which Regulator of G-protein Signaling 1 (RGS1) and Structural Maintenance of Chromosomes Protein 4 (SMC4) were the most significant. Biological pathway analysis adjusted for gender, treatment (cooling therapy versus usual care), and estimated blood leukocyte proportions revealed over-representation of genes from pathways related to melatonin and polo-like kinase in babies with adverse outcome.

Senior author Dr. Sudhin Thayyil, professor of perinatal neuroscience at Imperial College London, said, "The results from these blood tests will allow us to gain more insight into disease mechanisms that are responsible for brain injury and allow us to develop new therapeutic interventions or improve those which are already available."

The study was published in the August 4, 2020, online edition of the journal Scientific Reports.


Related Links:

Imperial College London

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.