We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




RNA-Based Test Developed for HPV Detection and Cancer Diagnosis

By LabMedica International staff writers
Posted on 19 Aug 2019
Print article
Image: A scanning electron microscope (SEM) photograph of Papillomavirus particles (Photo courtesy of the Institut Pasteur/Odile Croissant).
Image: A scanning electron microscope (SEM) photograph of Papillomavirus particles (Photo courtesy of the Institut Pasteur/Odile Croissant).
An RNA-based diagnostic test was developed that can detect human papillomaviruses (HPVs) with performances comparable to or better than an HPV DNA-based reference diagnostic kit.

Human papillomaviruses are responsible for more than 99% of cervical cancers. About a dozen HPV types (including types 16, 18, 31, and 45) are called "high-risk" types because persistent infection has been linked to cancers such as cancer of the oropharynx, larynx, vulva, vagina, cervix, penis and anus. These cancers all involve sexually transmitted infection of HPV to the stratified epithelial tissue. HPV type 16 is the strain most likely to cause cancer and is present in about 47% of all cervical cancers, and in many vaginal and vulvar cancers, penile cancers, anal cancers, and cancers of the head and neck.

An estimated 561,200 new cancer cases worldwide (5.2% of all new cancers) were attributable to HPV in 2002, making HPV one of the most important infectious causes of cancer. HPV-associated cancers make up over 5% of total diagnosed cancer cases worldwide, and this incidence is higher in developing countries where it is estimated to cause almost half a million cases each year.

Molecular diagnostic tests based on the detection of viral DNA or RNA have low positive predictive values for the identification of cancer or precancerous lesions. Triage with the Papanicolaou test lacks sensitivity; and even when combined with molecular detection of high-risk HPV, this results in a significant number of unnecessary colposcopies.

Colposcopy is a diagnostic procedure to examine an illuminated, magnified view of the cervix as well as the vagina and vulva. Many pre-malignant lesions and malignant lesions in these areas have discernible characteristics that can be detected through the examination. The colposcopist is able to distinguish normal from abnormal appearing tissue and take directed biopsies for further pathological examination. The main goal of colposcopy is to prevent cervical cancer by detecting and treating precancerous lesions early.

Investigators at Institut Pasteur (Paris, France) sought to replace the current combination of cytology (Papanicolaou smear) and HPV molecular screening by a single molecular test for both the detection of high-risk or putative high-risk HPV and the triage of women at risk of transforming infection, before colposcopy.

Toward this end, they developed HPV RNA-Seq, a novel in vitro molecular diagnostics procedure for the detection of high-risk HPV infection and the identification of patients with high-grade squamous intraepithelial lesions (HSIL), which is a precancerous stage of the cervix. The RNA-Seq method is used to analyze the continuously changing cellular transcriptome. Specifically, RNA-Seq facilitates the ability to look at alternative gene spliced transcripts, post-transcriptional modifications, gene fusion, mutations/SNPs, and changes in gene expression over time, or differences in gene expression in different groups or treatments. In addition to mRNA transcripts, RNA-Seq can look at different populations of RNA to include total RNA and small RNAs. The HPV RNA-Seq assay described in the current study was based on the dual combination of multiplexed reverse transcription PCR (RT-PCR) and next-generation sequencing (NGS).

For the current proof-of-concept study, the investigators used HPV RNA-Seq to analyze samples from 55 patients, 28 with low-grade squamous intraepithelial lesions (LSIL) and 27 patients with precancerous HSIL. Results revealed that HPV RNA-Seq was able to detect and determine the type of HPV infection among a panel of 16 high-risk HPVs with results comparable to an officially approved HPV DNA molecular diagnostic kit. Moreover, HPV RNA-Seq detected two more HPV-positive patients than the DNA test and also identified more patients with multiple HPV infections. HPV RNA-Seq was found to have a sensitivity of 97.3% and NPV (negative predictive value) of 93.8%.

"We have developed HPV RNA-Seq, a novel in vitro molecular diagnostics procedure for the detection of high-risk HPV infection and the identification of patients with high-grade squamous intraepithelial lesions (HSIL), which is a precancerous stage of the cervix. HPV RNA-Seq is a unique test that combines the advantages of molecular assays (HPV typing) and cervical cytology (cell phenotyping)," said senior author Dr. Marc Eloit, group leader in the biology of infection unit at Institut Pasteur. "Effective cervical cancer screening requires high sensitivity and NPV for high-risk HPV infection, since women with a negative HPV test are usually tested again only after several years, This observation constitutes a solid argument in favor of a potential added medical value of HPV RNA-Seq compared with cytology."

The HPV RNA-Seq study was published in the August 12, 2019, online edition of The Journal of Molecular Diagnostics.

Related Links:
Institut Pasteur

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.