We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App




Genetic Loci Link Plasma Lipid Levels to CVD Risk

By LabMedica International staff writers
Posted on 07 Oct 2019
Print article
Image: The lipodome in connection with the total interactome of a cell (Photo courtesy of Wikimedia Commons).
Image: The lipodome in connection with the total interactome of a cell (Photo courtesy of Wikimedia Commons).
A team of Finnish and international researchers utilized both genomics and lipidomics approaches to identify novel genetic variants associated with plasma levels of lipid species and linked these levels to cardiovascular disease (CVD) risk.

The lipidome refers to the totality of lipids in cells. The human plasma lipidome consists of almost 600 distinct molecular species. Research results have suggested that the lipidome of an individual may be able to indicate cancer risks associated with dietary fats, particularly breast cancer.

While some plasma lipids such as cholesterol and triglycerides are well-established heritable risk factors for CVD, hundreds of other lipid species are known risk factors for cardiovascular disease but have not been well characterized. In this regard, investigators at the University of Helsinki (Finland) and their collaborators sought to establish links between lipid levels and cardiovascular disease risk. Specifically, they aimed to (1) determine heritability of lipid species and their genetic correlations; (2) identify genetic variants influencing the plasma levels of lipid species; (3) test the relationship between identified lipid–species-associated variants and CVD manifestations and (4) gain mechanistic insights into established lipid variants.

For this study, they performed genome-wide association analyses of 141 lipid species (in 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes of 511,700 individuals.

Results showed that the scans had identified 35 lipid-species-associated loci, 10 of which associated with CVD risk including five new loci. Furthermore, they found that lipoprotein lipase (LPL) more efficiently hydrolyzed medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids had the highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels.

"Our study demonstrates that lipidomics enables much deeper insights into the genetic regulation of lipid metabolism. We hope that the openly available browser will in part help future biomarker and drug target discovery and build our understanding of the pathways connecting genetic variation to cardiovascular and other lipid-related diseases", said senior author Dr. Samuli Ripatti, professor of biometry at the University of Helsinki.

The study was published in the September 24, 2019, online edition of the journal Nature Communications and the data are freely available on the Internet at https://mqtl.fimm.fi.

Related Links:
University of Helsinki

Gold Supplier
Real-Time PCR System
CFX Opus 384 System
New
PCR Workstations
AC600 Series
New
RT-PCR Master RNA Mix
STAT-NAT RNA-Mix Kit
New
5-Part Differential Hematology Analyzer
Abacus 5

Print article
IIR Middle East

Channels

Molecular Diagnostics

view channel
Image: The SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian is used to generate strand-specific RNA-seq libraries (Photo courtesy of Takara Bio)

Cell-free RNA Profiles Gauge Preeclampsia Risk Months Before Symptoms

The period from conception to delivery represents the most rapid growth and development in an individual’s life. The ability to support this development requires dramatic and inadequately understood alterations... Read more

Hematology

view channel
Image: QX200 AutoDG ddPCR System and QXDx BCR-ABL %IS Kit (Photo courtesy of Bio-Rad)

ddPCR Developed for BCR-ABL1 Fusion Transcript in B-Lymphoblastic Leukemia

Droplet digital polymerase chain reaction (ddPCR) is a novel polymerase chain reaction (PCR) technique reliant on massive sample partitioning to generate individual reaction chambers (droplets) in which... Read more

Industry

view channel
Illustration

Global Coagulation Analyzers Market Driven by Growing Awareness About Timely Diagnosis of Blood Clots

The global coagulation analyzers market is expected to reach USD 11.7 billion by 2028, driven by the increasing understanding of blood clots and the fact that they can be avoided with early detection.... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.