We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics

Download Mobile App




Method Developed for Enriching Trophoblast Population in Samples

By LabMedica International staff writers
Posted on 02 Sep 2019
Print article
Image: The transverse section of a chorionic villus (Photo courtesy of Wikimedia Commons).
Image: The transverse section of a chorionic villus (Photo courtesy of Wikimedia Commons).
A recent paper described a technique to increase the proportion of placental trophoblast cells in cervical samples by 700%, which enables individual trophoblasts to be picked out for genetic testing.

Currently, diagnosis of genetic disorders in developing fetuses requires capture of trophoblasts through amniocentesis or chorionic villus sampling, both invasive procedures. Extravillous trophoblasts (EVTs) have the potential to provide the entire fetal genome for prenatal testing. Previous studies have demonstrated the presence of EVTs in the cervical canal and the ability to retrieve a small quantity of these cells by cervical sampling. However, these small quantities of trophoblasts are greatly outnumbered by the population of cervical cells in the sample, making isolation of the trophoblasts difficult.

Investigators at Brown University (Providence, RI, USA) took advantage of differences in morphology between trophoblasts and other cervical cells (trophoblasts are smaller, differ in shape, and have relatively large nuclei) to develop a method to enrich the trophoblast population in a cervical sample through differential settling of the cells in polystyrene wells.

Initially the investigators added small quantities of JEG-3 trophoblast cell line cells into clinical samples from standard Pap tests taken at five to 20 weeks of gestation to determine the optimal workflow. They observed that a four-minute incubation period in the capture wells led to a maximum in JEG-3 cell settling onto the plastic surface with the removal of more than 90% of the cervical cell population, leading to a 700% enrichment in JEG-3 cells.

The investigators then went on to conduct a proof-of-concept study on an imaging and picking platform to demonstrate the ability to pick single trophoblast cells for whole genome amplification. Results showed that the new technique was quick, inexpensive, minimized cell loss, and yielded retrieval of individual trophoblast cells.

"There is a large need for biomedical engineering techniques toward advancing prenatal and women's health," said first author Christina Bailey-Hytholt, a doctoral research student in biomedical engineering at Brown University. "Our work is a step toward more non-invasive prenatal testing options."

The trophoblast enrichment technique was described in the August 20, 2019, online edition of the journal Scientific Reports.

Related Links:
Brown University


Print article

Channels

Molecular Diagnostics

view channel
Image: FIT (Fecal Immunochemical Test) is a stool test designed to identify possible signs of bowel disease. It detects minute amounts of blood in feces (fecal occult blood) (Photo courtesy of Alpha Laboratories, United Kingdom)

Study Confirms Performance of Rapid Stool Test for Detection of Colorectal Cancer

A recently published paper confirmed the diagnostic performance of the fecal immunochemical test (FIT) for patients with low-risk symptoms of colorectal cancer. The FIT uses specific antibodies to detect... Read more

Pathology

view channel
Image: The Leica Bond III stainer is fully automated Immunohistochemical and In Situ Hybridization (IHC and ISH stainer) (Photo courtesy of Leica Biosystems).

Mismatch Repair/Microsatellite Instability Evaluated Using Cytology Effusion Specimens

DNA mismatch repair (MMR) status is routinely assessed in colorectal and endometrial carcinoma as a method of cancer prevention, surveillance in patients with Lynch syndrome and their families, and for... Read more

Industry

view channel
Illustration

Roche Renews Partnership with Sysmex to Deliver Hematology Testing Solutions

Under the new framework of a Global Business Partnership Agreement (GBP) signed between Roche (Basel, Switzerland) and Sysmex Corporation (Kobe, Japan), both the companies have renewed their commitment... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.