We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Method Developed for Enriching Trophoblast Population in Samples

By LabMedica International staff writers
Posted on 02 Sep 2019
Print article
Image: The transverse section of a chorionic villus (Photo courtesy of Wikimedia Commons).
Image: The transverse section of a chorionic villus (Photo courtesy of Wikimedia Commons).
A recent paper described a technique to increase the proportion of placental trophoblast cells in cervical samples by 700%, which enables individual trophoblasts to be picked out for genetic testing.

Currently, diagnosis of genetic disorders in developing fetuses requires capture of trophoblasts through amniocentesis or chorionic villus sampling, both invasive procedures. Extravillous trophoblasts (EVTs) have the potential to provide the entire fetal genome for prenatal testing. Previous studies have demonstrated the presence of EVTs in the cervical canal and the ability to retrieve a small quantity of these cells by cervical sampling. However, these small quantities of trophoblasts are greatly outnumbered by the population of cervical cells in the sample, making isolation of the trophoblasts difficult.

Investigators at Brown University (Providence, RI, USA) took advantage of differences in morphology between trophoblasts and other cervical cells (trophoblasts are smaller, differ in shape, and have relatively large nuclei) to develop a method to enrich the trophoblast population in a cervical sample through differential settling of the cells in polystyrene wells.

Initially the investigators added small quantities of JEG-3 trophoblast cell line cells into clinical samples from standard Pap tests taken at five to 20 weeks of gestation to determine the optimal workflow. They observed that a four-minute incubation period in the capture wells led to a maximum in JEG-3 cell settling onto the plastic surface with the removal of more than 90% of the cervical cell population, leading to a 700% enrichment in JEG-3 cells.

The investigators then went on to conduct a proof-of-concept study on an imaging and picking platform to demonstrate the ability to pick single trophoblast cells for whole genome amplification. Results showed that the new technique was quick, inexpensive, minimized cell loss, and yielded retrieval of individual trophoblast cells.

"There is a large need for biomedical engineering techniques toward advancing prenatal and women's health," said first author Christina Bailey-Hytholt, a doctoral research student in biomedical engineering at Brown University. "Our work is a step toward more non-invasive prenatal testing options."

The trophoblast enrichment technique was described in the August 20, 2019, online edition of the journal Scientific Reports.

Related Links:
Brown University

Gold Supplier
SARS-CoV-2/Flu A/B & RSV Test
RespiBio Panel 3 (RBRP3)
New
Progesterone ELISA Test
17-Alpha Hydroxy Progesterone ELISA
New
Automatic Urine Sediment Analyzer
US-120
New
Automatic Biochemistry Analyzer
Falcon 260

Print article
IIR Middle East

Channels

Molecular Diagnostics

view channel
Image: The SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian is used to generate strand-specific RNA-seq libraries (Photo courtesy of Takara Bio)

Cell-free RNA Profiles Gauge Preeclampsia Risk Months Before Symptoms

The period from conception to delivery represents the most rapid growth and development in an individual’s life. The ability to support this development requires dramatic and inadequately understood alterations... Read more

Hematology

view channel
Image: QX200 AutoDG ddPCR System and QXDx BCR-ABL %IS Kit (Photo courtesy of Bio-Rad)

ddPCR Developed for BCR-ABL1 Fusion Transcript in B-Lymphoblastic Leukemia

Droplet digital polymerase chain reaction (ddPCR) is a novel polymerase chain reaction (PCR) technique reliant on massive sample partitioning to generate individual reaction chambers (droplets) in which... Read more

Industry

view channel
Illustration

Global Coagulation Analyzers Market Driven by Growing Awareness About Timely Diagnosis of Blood Clots

The global coagulation analyzers market is expected to reach USD 11.7 billion by 2028, driven by the increasing understanding of blood clots and the fact that they can be avoided with early detection.... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.