Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

By LabMedica International staff writers
Posted on 16 Jul 2025

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. More...

These differences significantly impact how tumors respond to treatments, making accurate identification crucial. Traditionally, scientists have examined the RNA or protein molecules each cancer cell expresses, where it is located in the tumor, and what it looks like under a microscope. This has left a gap in understanding how cells behave in relation to their surroundings, limiting the precision of cancer treatments. The problem is compounded by methodologies that miss critical molecular or contextual information, such as identifying immune cells at the boundaries of tumors. Now, a new solution integrates multiple aspects of cancer cell biology, using deep learning technology to provide a comprehensive profile of individual cells, even those that seem similar but behave differently depending on their environment.

The solution, called CellLENS, was created by researchers from MIT (Cambridge, MA, USA) in collaboration with several other prestigious institutions. It employs a combination of convolutional neural networks and graph neural networks to integrate information on cell morphology, location, and behavior. By analyzing cancer samples, including those from lymphoma and liver cancer, the system identifies rare immune cell subtypes and their role in disease processes. This method enables scientists to group cells based on their biology and better understand their functions. The tool can detect important layers of information such as where a cell is located in tissue and how it interacts with its surroundings, helping to uncover previously overlooked cell behaviors.

The researchers tested and validated CellLENS by applying it to samples from both healthy tissue and various cancers. Their findings, published in Nature Immunology, revealed insights into the immune system's interaction with tumors, including rare immune cell subtypes and their role in tumor infiltration and immune suppression. These discoveries hold the potential to guide more targeted cancer treatments and improve immunotherapies by providing deeper insights into cellular behavior and location. Moving forward, the researchers aim to refine and expand the tool’s applications to accelerate the development of personalized therapies.

“I’m extremely excited by the potential of new AI tools, like CellLENS, to help us more holistically understand aberrant cellular behaviors within tissues,” said co-author Alex K. Shalek. “We can now measure a tremendous amount of information about individual cells and their tissue contexts with cutting-edge, multi-omic assays. Effectively leveraging that data to nominate new therapeutic leads is a critical step in developing improved interventions. When coupled with the right input data and careful downstream validations, such tools promise to accelerate our ability to positively impact human health and wellness.”

Related Links:
MIT


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
New
Automated MALDI-TOF MS System
EXS 3000
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Technology

view channel
Image: The SWITCH hybrid pipette is designed to simplify and accelerate pipetting tasks (Photo courtesy of INTEGRA)

Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting

Manual pipettes offer the control needed for delicate tasks such as mixing or supernatant removal, but typically fall short in repetitive workflows like aliquoting. Electronic pipettes solve this problem... Read more

Industry

view channel
Image: The partnership between OGT and QIAGEN unlocks a complete sample to report workflow for SureSeq NGS panels (Photo courtesy of OGT)

Qiagen and Oxford Gene Technology Partner on Sequencing Panel Interpretation

In clinical research, next-generation sequencing (NGS) panels provide essential insights for genetic analysis, but many laboratories face challenges in transforming raw sequencing data into clinically... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.