We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics- Hematology Division

Download Mobile App




Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

By LabMedica International staff writers
Posted on 28 Oct 2019
Print article
Image: A micrograph of a diffuse large B cell lymphoma (DLBCL) (Photo courtesy of Wikimedia Commons).
Image: A micrograph of a diffuse large B cell lymphoma (DLBCL) (Photo courtesy of Wikimedia Commons).
Cancer researchers developed a 29 gene–based weighted prognostic score for predicting event-free survival and overall survival of patients suffering from diffuse large B-cell lymphoma (DLBCL).

DLBCL is the most common type of non-Hodgkin lymphoma, an aggressive cancer that begins in certain immune system cells and can occur almost anywhere in the body. This cancer occurs primarily in older individuals, with a median age of diagnosis at approximately 70 years of age, although it can also occur in children and young adults in rare cases. An elevated level of circulating cell-free DNA (cfDNA) has been associated with tumor mass and poor prognosis in DLBCL, but the tumor-specific molecular alterations in cfDNA with prognostic significance have remained unclear.

To help clarify this issue, investigators at the University of Chicago Medical Center (IL, USA) studied the association between 5-hydroxymethylcytosines (5hmC), a mark of active demethylation and gene activation, in cfDNA from blood plasma and prognosis in newly diagnosed DLBCL patients.

The investigators emplyed the 5hmC-Seal, a highly sensitive chemical labeling–based sequencing technology, to profile genome-wide 5hmC in cfDNA from blood plasma of 48 patients with newly diagnosed DLBCL. This technology used the T4 bacteriophage beta-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group could be chemically modified with biotin for detection, affinity enrichment, and sequencing of 5-hmC–containing DNA fragments. The 5hmC-Seal technology was shown to be a robust profiling approach for enriching and quantifying 5hmC-modified DNA fragments with as little as one to two nanograms of cfDNA in less than five milliliters of plasma.

The investigators tested the hypothesis that 5hmC profiles in cfDNA at the time of diagnosis reflected the clinical characteristics of DLBCL and were associated with survival. Results obtained during the study enabled the development of a 29 gene–based weighted prognostic score for predicting event-free survival and overall survival.

“Our findings, if validated in a larger independent patient population, could impact the cure rate for DLBCL,” said first author Dr. Brian Chiu, associate professor of epidemiology at the University of Chicago Medical Center. “By identifying those patients who are at high-risk of treatment failure, we can see who may benefit from individualized clinical management or earlier treatment with novel or targeted therapies.”

The study was published in the October 8, 2019, online edition of the journal Blood Advances.

Related Links:
University of Chicago Medical Center

Gold Supplier
Blood Glucose Laboratory Analyzer
Nova Primary
New
Silver Supplier
COVID-19 Ag Self Test
OnSite COVID-19 Ag Self Test
New
Laboratory Automation System
UniVerse
New
Undercounter Laboratory Refrigerator
iLR105-GX

Print article

Channels

Hematology

view channel
Image: Atellica Solution (Photo courtesy of Siemens Healthineers)

Siemens Introduces New Intelligent, Integrated IVD Solutions Virtually at EUROMEDLAB 2021

Siemens Healthineers (Erlangen, Germany) introduced new intelligent, integrated IVD solutions virtually at the XXIV IFCCEFLM European Congress of Clinical Chemistry and Laboratory Medicine (EuroMedLab... Read more

Immunology

view channel
Image: The Luminex 200 Instrument System sets the standard for multiplexing, providing the ability to perform up to 100 different tests in a single reaction volume on a flow cytometry-based platform (Photo courtesy of Luminex Corp)

Inflammatory Cytokines Measured in Infants Born to Preterm Preeclamptic Mothers

Preeclampsia is both a vascular and inflammatory disorder. The pathophysiology of preeclampsia is complex and rooted in the interplay between maternal and placental factors with the key characteristics... Read more

Microbiology

view channel
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)

Multiplex Immunoassay Developed for Confirmation and Typing of HTLV Infections

Human T-Cell Lymphotropic Viruses (HTLV) type 1 and type 2 account for an estimated five to 10 million infections worldwide and are transmitted through breast feeding, sexual contacts and contaminated... Read more

Pathology

view channel
Image: The Ventana BenchMark Ultra autostainer is for cancer diagnostics with automation and the test menu include IHC, ISH, and FITC tests (Photo courtesy of Ventana Medical System)

Specific Biomarker Investigated for Triple-Negative Breast Cancer Diagnosis

Triple-negative breast cancer (TNBC) is defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression and comprises a heterogeneous... Read more

Technology

view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more

Industry

view channel
Illustration

Global Lateral Flow Assay Market to Reach Nearly USD 6.5 Billion by 2031 Due to Surge in Demand for Rapid POC Testing

The global lateral flow assay market is projected to grow at a CAGR of around 5% from USD 3.7 billion in 2020 to over USD 6.4 billion by 2031, driven by the growing adoption of home-based lateral flow... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.