We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
DxGen

Download Mobile App




Link Confirmed between Living in Poverty and Developing Diseases

By LabMedica International staff writers
Posted on 30 Sep 2019
Print article
Image: This gene duplication has created a copy-number variation (CNV). The chromosome now has two copies of this section of DNA, rather than one (Photo courtesy of Wikimedia Commons).
Image: This gene duplication has created a copy-number variation (CNV). The chromosome now has two copies of this section of DNA, rather than one (Photo courtesy of Wikimedia Commons).
A recently published study carried out in the United Kingdom confirmed the existence of a link between economic deprivation and the genetic tendency to develop disease.

It would seem obvious that poverty would go hand in hand with disease. However, scientific proof of this linkage has been lacking. To confirm the relationship, investigators at the University of Manchester (United Kingdom) combined a test population’s Index of Multiple Deprivation Rank (IMDR) with genetic-linked health data.

The IMDR was based on multiple factors including place of residence, household income, education level, and employment status. Genetics-linked health status was based on pathogenic copy number variants (CNVs), which cause hereditary diseases due to the presence and transmission of chromosomes with extra or missing sections of DNA.

The current study included 473 families with individuals with pathogenic autosomal CNVs and known inheritance status. The participants were selected from a database of more than 17,000 DNA samples maintained by the Manchester Centre for Genomic Medicine.

Results of the analysis revealed that the IMDR distribution of families with pathogenic CNVs was significantly different from the general population. Families with inherited CNVs were significantly more likely to be living in areas of higher deprivation when compared with families that had individuals with non-inherited CNVs.

To explain the linkage between residing in areas of economic and social deprivation and the tendency to develop inherited disease, the investigators stated that, "Lower socioeconomic status in families with medically relevant inherited pathogenic and likely pathogenic [genetic changes] with milder phenotype [lower risk of disease] could therefore be due to cumulative multi-generational consequences of these subclinical effects."

The study was published in the September 23, 2019, online edition of the Journal of Medical Genetics.

Related Links:
University of Manchester


Print article

Channels

Molecular Diagnostics

view channel
Image: Blood smear from a P. falciparum culture: several red blood cells have ring stages inside them while close to the center is a schizont and on the left a trophozoite (Photo courtesy of Wikimedia Commons)

Panel of MicroRNAs Differentiates Uncomplicated and Severe Malaria in Children

MicroRNAs (miRNAs), which are rapidly released from damaged tissues into the host fluids, constitute a promising biomarker for the prognosis of severe malaria. MiRNAs comprise a class of about 20 n... Read more

Pathology

view channel
Image: The Leica Bond III stainer is fully automated Immunohistochemical and In Situ Hybridization (IHC and ISH stainer) (Photo courtesy of Leica Biosystems).

Mismatch Repair/Microsatellite Instability Evaluated Using Cytology Effusion Specimens

DNA mismatch repair (MMR) status is routinely assessed in colorectal and endometrial carcinoma as a method of cancer prevention, surveillance in patients with Lynch syndrome and their families, and for... Read more

Industry

view channel
Image: BioProfile FLEX2 Cell Culture Analyzer (Photo courtesy of Nova Biomedical)

Nova Biomedical Adds Sample Retain Collector to BioProfile FLEX2 Cell Culture Analyzer

Nova Biomedical (Waltham, MA, USA) has added a Sample Retain Collector (SRC) for its BioProfile FLEX2 automated cell culture analyzer which measures up to 16 tests including pH, gases, metabolites, osmolality,... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.