We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Groundbreaking Blood Test to Transform Diagnosis and Monitoring of Multiple Myeloma

By LabMedica International staff writers
Posted on 11 Aug 2025

Multiple myeloma is a complex bone marrow cancer often preceded by conditions such as Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM). More...

Diagnosis and monitoring have traditionally relied on bone marrow biopsies, which are painful, infrequent, and frequently inconclusive when paired with techniques like Fluorescence in situ hybridization (FISH). Researchers have now created a non-invasive blood test that offers more accurate risk assessment and monitoring of multiple myeloma.

Scientists at Dana-Farber Cancer Institute (Boston, MA, USA) have developed SWIFT-seq, a single-cell sequencing method that profiles circulating tumor cells (CTCs) in blood samples. This approach enables comprehensive genetic monitoring and risk evaluation without the need for bone marrow extraction. Beyond counting CTCs, the test analyzes genomic alterations, tumor growth rates, and prognostic gene signatures from a single sample.

The study, published in Nature Cancer, involved 101 patients and healthy donors. SWIFT-seq successfully captured CTCs in 90% of patients with MGUS, SMM, and MM. Notably, it identified CTCs in 95% of those with SMM and 94% of newly diagnosed MM patients. These results highlight its superior performance over existing techniques like FISH, particularly in groups most likely to benefit from enhanced genomic surveillance.

Unlike methods such as flow cytometry, SWIFT-seq identifies CTCs using a tumor’s molecular barcode rather than relying on cell surface markers. This enables a deeper understanding of tumor biology, including the discovery of gene signatures linked to a tumor’s circulatory capacity, which may influence disease spread and treatment strategies.

This blood-based technology has the potential to replace or complement invasive biopsies, offering clinicians a faster and more reliable tool for patient management. The insights it provides could guide the development of new therapies aimed at preventing tumor dissemination in myeloma.

“It would be amazing if we had a blood-based test that can outperform FISH and that works in the majority of patients – we think SWIFT-seq may just be that test,” said Dr. Romanos Sklavenitis-Pistofidis, co-first author.

Related Links:
Dana-Farber Cancer Institute


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.