We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria

By LabMedica International staff writers
Posted on 14 Oct 2019
Print article
Image: A representation of CEACAM5 protein (Photo courtesy of Wikimedia Commons).
Image: A representation of CEACAM5 protein (Photo courtesy of Wikimedia Commons).
Following careful analysis of DNA sequences collected in The Cancer Genome Atlas, researchers have proposed that CEACAM (carcinoembryonic antigen related cell adhesion molecule) proteins disrupt TGFB signaling, which alters the composition of the intestinal microbiome to promote development of colorectal cancer.

The TGFB (transforming growth factor beta) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, apoptosis, cellular homeostasis, and other cellular functions. In spite of the wide range of cellular processes that the TGFB signaling pathway regulates, the process is relatively simple. TGFB superfamily ligands bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMAD proteins (R-SMADs), which binds the coSMAD SMAD4. R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression.

Investigators at George Washington University (Washington, DC, USA) studied interactions among proteins of the CEACAM family, which interact with microbes and the transforming growth factor beta (TGFB) signaling pathway, which is often altered in colorectal cancer cells. They investigated mechanisms by which CEACAM proteins inhibit TGFB signaling and alter the intestinal microbiome to promote development of colorectal cancer.

For this study, the investigators collected data on DNA sequences, mRNA expression levels, and patient survival times from 456 colorectal adenocarcinoma cases, and a separate set of 594 samples of colorectal adenocarcinomas, in the Cancer Genome Atlas. The Cancer Genome Atlas is a project, begun in 2005, to catalog genetic mutations responsible for cancer, using genome sequencing and bioinformatics. The Cancer Genome Atlas applies high-throughput genome analysis techniques to improve diagnosis, treatment, and prevention of cancer through a better understanding of the genetic basis of this disease.

Results revealed that in colorectal adenocarcinomas, high expression levels of genes encoding CEACAM proteins, especially CEACAM5, were associated with reduced survival times of patients. There was an inverse correlation between expression of CEACAM genes and expression of TGFB pathway genes (TGFBR1, TGFBR2, and SMAD3). In colorectal adenocarcinomas, they also found an inverse correlation between expression of genes in the TGFB signaling pathway and genes that regulate stem cell features of cells. They found mutations encoding L640I and A643T in the B3 domain of human CEACAM5 in colorectal adenocarcinomas; structural studies indicated that these mutations would alter the interaction between CEACAM5 and TGFBR1.

These findings from human cancer patients were reinforced by data from animal studies, which showed that compared with feces from wild-type mice, feces from mice with defects in TGFB signaling had increased abundance of bacterial species that have been associated with the development of colon tumors.

“Colon cancer is increasing in young people. Current guidelines recommend screening those over age 50 for colon cancer, but today we are seeing that 15% of those with colon cancer are under the age of 50,” said senior author Dr. Lopa Mishra, professor of surgery at the George Washington University. “We hypothesized that diet and its effects on the microbiome may be big players, which is where we focused our study.”

The CEACAM protein study was published in the October 1, 2019, online edition of the journal Gastroenterology.

Related Links:
George Washington University

Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
New
Safety Lancet
Unistik Pro
New
Influenza A Immunoassay
Proflow Influenza A Test
New
Flu A/B & RSV Multiplex RT PCR Test
Savvygen Flu A, Flu B & RSV

Print article
MEDLAB - INFORMA

Channels

Immunology

view channel
Image: Scientists have won USD 9.5 million to study emerging pathogens (Photo courtesy of Pexels)

Study of Emerging Pathogens to Better Understand Influenza-Antibody Interactions Could Improve Diagnostics

Outbreaks of Avian influenza have occurred around the world for over a century. The highly pathogenic H5N1 virus which was first identified in 1996 can lead to severe disease and has a high fatality rate... Read more

Microbiology

view channel
Image: Medical illustration of Carbapenem-resistant Enterobacteriacea (Photo courtesy of CDC, Stephanie Rossow)

Breakthrough Test Enables Targeted Antibiotic Therapy for Various Enterobacter Species

Bacteria of the Enterobacter genus are considered to be the most dangerous bacteria linked to hospital infections across the world. Some of their representatives demonstrate high resistance to commonly-used... Read more

Technology

view channel
Image: Flexible copper sensor made cheaply from ordinary materials (Photo courtesy of University of São Paulo)

Low-Cost Portable Sensor Detects Heavy Metals in Sweat

Heavy metals like lead and cadmium can be found in batteries, cosmetics, food and many other things that have become a part of daily life. However, they become toxic if they accumulate in the human body... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.