Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Fusion Protein Proposed as Prostate Cancer Biomarker

By LabMedica International staff writers
Posted on 14 Oct 2019
A novel gene fusion product has been proposed as a biomarker for the non-invasive diagnosis of prostate cancer.

Investigators at the Henry Ford Health System (Detroit, MI, USA) recently presented the functional characterization of pseudogene-associated recurrent gene fusion in prostate cancer. More...
The fusion gene KLK4-KLKP1 was formed by the fusion of the protein-coding gene KLK4 (Kallikrein 4) with the noncoding pseudogene KLKP1.

Pseudogenes are segments of DNA that are related to real genes. Pseudogenes have lost at least some functionality, relative to the complete gene, in cellular gene expression or protein-coding ability. Pseudogenes often result from the accumulation of multiple mutations within a gene whose product is not required for the survival of the organism, but can also be caused by genomic copy number variation (CNV). Although not fully operational, pseudogenes may be functional, similar to other kinds of noncoding DNA, which can perform regulatory tasks.

Currently, diagnostic tests for prostate cancer are not sufficiently specific to be able to differentiate individuals without prostate cancer, those with low risk disease that is unlikely to be of clinical significance, and those with disease that should be treated. To rectify this situation, the investigators carried out a study that began with the screening of a cohort of 659 patients (380 Caucasian American; 250 African American, and 29 patients from other races).

Results of the screen revealed that the KLK4-KLKP1 gene fusion product was expressed in about 32% of prostate cancer patients. Furthermore, screening of patient urine samples showed that KLK4-KLKP1 could be detected non-invasively in urine.

Development of an antibody specific to the KLK4-KLKP1 fusion protein confirmed the expression of the full-length KLK4-KLKP1 protein in prostate tissues. In vitro and in vivo functional assays to study the oncogenic properties of KLK4-KLKP1 confirmed its role in cell proliferation, cell invasion, intravasation, and tumor formation.

"The unique feature of this fusion gene is the conversion of the noncoding pseudogene KLKP1 into a protein coding gene, and its unique expression in about 30% of high Gleason grade prostate cancer," said senior author Dr. Nallasivam Palanisamy, associate scientist in cancer research at the Henry Ford Health System. "Like other ETS family gene fusions, KLK4-KLKP1 can also be detected in the urine samples of patients with prostate cancer, enabling non-invasive detection of prostate cancer. Given the unique feature of this fusion, prostate cancer specific expression, oncogenic properties, and noninvasive detection, this novel gene fusion has the potential to be used as a biomarker for early detection of prostate cancer and a therapeutic target."

The gene fusion paper was published in the October 2019 issue of the journal Neoplasia.

Related Links:
Henry Ford Health System


Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
New
Gold Member
Collection and Transport System
PurSafe Plus®
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Sudhaunsh Deshpande holding the molecularly imprinted polymer-based biosensor (Photo courtesy of University of Liverpool)

AI-Powered Blood Tests Enable Early Detection of Alzheimer’s Disease

Alzheimer’s disease, the most common form of dementia, affects more than 55 million people globally. Early diagnosis is critical for managing symptoms and slowing progression, yet current testing methods... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.