We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Gene Fusion Protein Proposed as Prostate Cancer Biomarker

By LabMedica International staff writers
Posted on 14 Oct 2019
Print article
Image: Human Kallikrein 4 (KLK4) protein complexed with nickel and p-aminobenzamidine  (Photo courtesy of Wikimedia Commons).
Image: Human Kallikrein 4 (KLK4) protein complexed with nickel and p-aminobenzamidine (Photo courtesy of Wikimedia Commons).
A novel gene fusion product has been proposed as a biomarker for the non-invasive diagnosis of prostate cancer.

Investigators at the Henry Ford Health System (Detroit, MI, USA) recently presented the functional characterization of pseudogene-associated recurrent gene fusion in prostate cancer. The fusion gene KLK4-KLKP1 was formed by the fusion of the protein-coding gene KLK4 (Kallikrein 4) with the noncoding pseudogene KLKP1.

Pseudogenes are segments of DNA that are related to real genes. Pseudogenes have lost at least some functionality, relative to the complete gene, in cellular gene expression or protein-coding ability. Pseudogenes often result from the accumulation of multiple mutations within a gene whose product is not required for the survival of the organism, but can also be caused by genomic copy number variation (CNV). Although not fully operational, pseudogenes may be functional, similar to other kinds of noncoding DNA, which can perform regulatory tasks.

Currently, diagnostic tests for prostate cancer are not sufficiently specific to be able to differentiate individuals without prostate cancer, those with low risk disease that is unlikely to be of clinical significance, and those with disease that should be treated. To rectify this situation, the investigators carried out a study that began with the screening of a cohort of 659 patients (380 Caucasian American; 250 African American, and 29 patients from other races).

Results of the screen revealed that the KLK4-KLKP1 gene fusion product was expressed in about 32% of prostate cancer patients. Furthermore, screening of patient urine samples showed that KLK4-KLKP1 could be detected non-invasively in urine.

Development of an antibody specific to the KLK4-KLKP1 fusion protein confirmed the expression of the full-length KLK4-KLKP1 protein in prostate tissues. In vitro and in vivo functional assays to study the oncogenic properties of KLK4-KLKP1 confirmed its role in cell proliferation, cell invasion, intravasation, and tumor formation.

"The unique feature of this fusion gene is the conversion of the noncoding pseudogene KLKP1 into a protein coding gene, and its unique expression in about 30% of high Gleason grade prostate cancer," said senior author Dr. Nallasivam Palanisamy, associate scientist in cancer research at the Henry Ford Health System. "Like other ETS family gene fusions, KLK4-KLKP1 can also be detected in the urine samples of patients with prostate cancer, enabling non-invasive detection of prostate cancer. Given the unique feature of this fusion, prostate cancer specific expression, oncogenic properties, and noninvasive detection, this novel gene fusion has the potential to be used as a biomarker for early detection of prostate cancer and a therapeutic target."

The gene fusion paper was published in the October 2019 issue of the journal Neoplasia.

Related Links:
Henry Ford Health System

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.