We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Platelets Could Improve Early and Minimally Invasive Detection of Cancer

By LabMedica International staff writers
Posted on 18 Aug 2025

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells. More...

Beyond these roles, early cancer detection remains limited by the scarcity of circulating tumor DNA in the blood, which reduces the sensitivity of liquid biopsy techniques. New findings now reveal that platelets themselves may hold crucial information for improving diagnostics.

A study led by the Ludwig Institute for Cancer Research (New York, NY, USA) has shown that platelets absorb fragments of DNA shed by dying cells, including cancer-derived DNA. These saucer-shaped cells, though lacking nuclei, act like sponges, mopping up genetic material that would otherwise accumulate and contribute to inflammation. The discovery suggests that platelets may serve not only in immune regulation but also as powerful tools for detecting disease.

Researchers investigated the unique structure of platelets, which contain a network of membrane-lined channels known as the open canalicular system. These channels enable platelets to collect biomolecules as they circulate, including viral RNA and DNA. Inspired by this property, the team hypothesized that platelets might also capture genomic fragments, a theory supported by earlier research.

Their findings, published in Science, confirm that platelets harbor human cell-free DNA in both lab cultures and clinical samples. To rule out contamination from parent cells, scientists analyzed platelets from pregnant women and successfully predicted fetal sex by detecting Y chromosome fragments in every blood sample analyzed. Additional studies revealed that platelets also take up cancer-specific mutations, even in people with pre-cancerous polyps, highlighting their untapped diagnostic potential.

This discovery opens the door to expanding the sensitivity of liquid biopsies, which currently discard platelets during analysis. By harnessing DNA within platelets, clinicians could detect cancer earlier, improve therapy monitoring, and refine prenatal testing methods. Future research will seek to clarify the role of platelets in the physiological management of cell-free DNA and the fate and consequences of DNA fragments released upon platelet activation.

“We’ve demonstrated that platelets take up DNA fragments that bear the mutational signatures of cancer cells,” said postdoc Lauren Murphy. “This is true not only in patients with advanced cancer but, remarkably, also in people who have pre-cancerous polyps in their colon, suggesting that platelets may offer an additional and so far untapped reservoir of cfDNA that could significantly improve the sensitivity of liquid biopsies.”

Related Links:
Ludwig Cancer Research


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.