We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

By LabMedica International staff writers
Posted on 23 Dec 2024

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions. More...

Healthy, fresh red blood cells have a characteristic biconcave shape, resembling a dumbbell, which facilitates efficient oxygen release. However, during refrigerated storage, red blood cells become energetically stressed and adopt a more spherical shape, slowing down their oxygen release. Researchers have now developed a method to assess the oxygen delivery capability of red blood cells by measuring their shape. This test could enhance practices in specialized transplant and transfusion settings, as well as improve blood banking procedures.

Researchers at the University of Oxford (Oxford, UK), in collaboration with NHS Blood and Transplant (London, UK), have created FlowScore, a formula designed to predict the rate at which red blood cells release oxygen. While earlier studies at Oxford's Department of Physiology, Anatomy, and Genetics identified factors affecting oxygen release from red cells, the testing method was too complex for routine use in blood centers focused on enhancing the monitoring of blood stored for transfusion. To adapt these findings for blood banking, NHS Blood and Transplant’s Component Development Laboratory joined the initiative, providing blood samples stored following NHS protocols and using measurements from hematology analyzers. These analyzers employ flow cytometry, which involves passing cells through a laser beam to examine their characteristics. The way light scatters off the cells reveals details about their size and shape.

The research, published in eBioMedicine, demonstrated that this information effectively predicts the oxygen release capacity of red blood cells, with the resulting predictive formula named FlowScore. This innovation simplifies, speeds up, and broadens access to red cell oxygen transport measurements for laboratories globally. Blood banks can now utilize FlowScore as a quality control tool during blood processing and storage. For instance, FlowScore helped quantify the positive effects of rejuvenating red blood cells and detect instances when blood handling deviated from blood bank standards. This could be crucial for monitoring the quality of stored blood in developing regions with higher ambient temperatures. Additionally, FlowScore may eventually offer a way to assess the quality of blood for specific patient groups if future research shows benefits for those populations.

“We find that FlowScore is a robust surrogate of oxygen-handling by red cells and provides new and important information on oxygen transport by the blood,” said Professor Pawel Swietach, Professor of Physiology at Oxford University. “Aside from its applications in transfusion medicine and blood banking, FlowScore can help identify new genetic, environmental and lifestyle factors that influence oxygen delivery to tissues.”

“FlowScore could become quite fundamental to the way blood is tested to ensure its quality,” added Dr. Peter Smethurst, from the NHSBT Blood and Transplant Component Development Laboratory. “It is a technical breakthrough that should improve the monitoring of stored blood and drive improvements that will most benefit vulnerable recipients of red cell transfusions.”

Related Links:
University of Oxford
NHS Blood and Transplant


New
Gold Member
Latex Test
SLE-Latex Test
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Plasmodium Test
Plasmodium DNA Real Time PCR Kit
New
Biochemistry Analyzer
Chemi+ 8100
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A blood-based test aims to address gaps in population-level early cancer detection (Photo courtesy of Harbinger Health)

Blood-Based MCED Test Enables Early-Stage Detection for Multiple Cancer Types

Around 84,000 new cancer cases in the United States each year are thought to arise from obesity, and over the past two decades, the rate of obesity-related cancers has climbed markedly. Thirteen malignancies... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.