We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Self-Driving Microscope Tracks and Analyzes Misfolded Protein Aggregation in Real Time

By LabMedica International staff writers
Posted on 28 Jul 2025

The accumulation of misfolded proteins in the brain is central to the progression of neurodegenerative diseases like Huntington’s, Alzheimer’s, and Parkinson’s. More...

Yet to the human eye, proteins that are destined to form harmful aggregates appear identical to normal ones, and these aggregates form rapidly and randomly—within minutes. Detecting and understanding the formation of such aggregates is crucial, as their biomechanical properties are directly linked to disease progression and disruption of cellular function. However, imaging tools that rely on fluorescent labels may alter cell properties and hamper accurate analysis. Now, researchers have developed a real-time imaging system capable of tracking protein aggregation dynamically and even predicting its onset before it begins.

The self-driving imaging system, developed by researchers at EPFL (Lausanne, Switzerland), in collaboration with the European Molecular Biology Laboratory (Heidelberg, Germany), builds on previous work involving deep learning algorithms that could detect mature protein aggregates in unlabeled images of living cells. The team developed two distinct algorithms. The first is an image classification algorithm that activates a Brillouin microscope—normally too slow for live-cell imaging—only when it detects mature aggregates. Brillouin microscopy uses scattered light to characterize the biomechanical properties of aggregates, such as elasticity. The second algorithm is an “aggregation-onset” detection tool trained on fluorescently labelled images, capable of distinguishing subtle differences and predicting when aggregation will occur with 91% accuracy. This predictive function enables the microscope to be activated precisely when needed, capturing the biomechanics of protein aggregation as it unfolds.

The researchers tested and validated the system by observing the full dynamic formation of aggregates and measuring their properties in real time. Their findings, published in Nature Communications, demonstrated how self-driving microscopy could incorporate label-free methods for broader biological use. The ability to foresee and capture aggregation processes has significant implications for drug discovery and precision medicine, especially in targeting toxic oligomers suspected to drive neurodegeneration. Going forward, the researchers aim to develop drug discovery platforms based on this technology to accelerate the development of more effective therapies for neurodegenerative diseases.

“This is the first publication that shows the impressive potential for self-driving systems to incorporate label-free microscopy methods, which should allow more biologists to adopt rapidly evolving smart microscopy techniques,” said EPFL PhD graduate Khalid Ibrahim, who led the collaborative effort.

Related Links:
EPFL
European Molecular Biology Laboratory


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: Automated cell imaging discriminates CD8+ T cells according to natalizumab treatment outcome in MS patients (B Chaves et al., Nat Commun 16, 5533 (2025). DOI: 10.1038/s41467-025-60224-3)

Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients

Multiple sclerosis (MS) is a chronic autoimmune and degenerative neurological disease that affects the central nervous system, leading to motor, cognitive, and mental impairments. Symptoms can include... Read more

Technology

view channel
Image: The SWITCH hybrid pipette is designed to simplify and accelerate pipetting tasks (Photo courtesy of INTEGRA)

Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting

Manual pipettes offer the control needed for delicate tasks such as mixing or supernatant removal, but typically fall short in repetitive workflows like aliquoting. Electronic pipettes solve this problem... Read more

Industry

view channel
Image: ELITechGroup’s unique Real-Time PCR technologies include the revolutionary Minor Groove Binder (Photo courtesy of ELITechGroup)

ELITech and Hitachi High-Tech to Develop Automated PCR Testing System for Infectious Diseases

Molecular testing has become central to diagnosing and monitoring infectious diseases by analyzing genetic information. The use of PCR during the COVID-19 pandemic showed its value, but traditional systems... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.