We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Editing Reduces Symptoms of Parasite Infection in Models

By LabMedica International staff writers
Posted on 29 Jan 2019
Print article
Image: Researchers \"knocked out\" the omega-1 ribonuclease protein using CRISPR/Cas9 and found that it greatly reduced the impact of schistosomiasis (Photo courtesy of George Washington University).
Image: Researchers \"knocked out\" the omega-1 ribonuclease protein using CRISPR/Cas9 and found that it greatly reduced the impact of schistosomiasis (Photo courtesy of George Washington University).
Tropical disease researchers used the CRISPR/Cas9 genome-editing tool to interfere with the ability of certain parasitic worms to invade and reproduce in rodent model systems.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system from Streptococcus pyogenes is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at George Washington University (Washington, DC, USA) employed CRISPR/Cas9 to modify the genomes of the parasites Schistosoma mansoni and Opisthorchis viverrini. S. mansoni causes schistosomiasis, in which freshwater worms enter the body by burrowing through the skin. The parasites then move through the bloodstream to lodge primarily in the liver where they lay eggs and reproduce. O. viverrini is a river fluke infection transmitted through traditional Southeast Asian cuisines. Infection by this parasite has been identified as a major risk factor for the development of usually fatal bile duct cancer (cholangiocarcinoma).

Each of these parasites produces and secretes characteristic proteins during the reproductive process that cause damage to surrounding host tissues. In the case of S. manosi, one such protein is the enzyme omega-1 ribonuclease, while O. viverrini parasites produce the growth factor, liver fluke granulin (Ov-grn-1).

In two papers published in the January 15, 2019, online edition of the journal eLife the investigators described how using CRISPR/Cas9 to eliminate the gene for omega-1 ribonuclease in S. mansoni eggs and the gene for Ov-grn-1 in O. viverrini affected infection by these organisms in rodent models.

Gene-edited Schistosoma eggs failed to polarize Th2 cytokine responses in macrophage/T-cell co-cultures, while the volume of pulmonary granulomas surrounding omega1-mutated eggs following tail-vein injection into mice was vastly reduced. In O. viverrini gene editing resulted in rapid depletion of Ov-grn-1 transcripts and the encoded Ov-grn-1 protein. Gene-edited parasites colonized the biliary tract of hamsters and developed into adult flukes, but the infection resulted in reduced pathology as evidenced by attenuated biliary hyperplasia and fibrosis.

"The genes we "knocked out" using CRISPR/Cas9 resulted in markedly diminished symptoms of infection in our animal models," said one of the senior authors, Dr. Paul Brindley, professor of microbiology, immunology, and tropical medicine at George Washington University. "Our research also showed that this revolutionary new biomedical procedure -- CRISPR/Cas9 -- can be adapted to study helminth parasites, which are a major public health problem in tropical climates."

"These neglected tropical diseases affect more than a quarter of a billion people primarily living in Southeast Asia, sub-Saharan Africa, and Latin America," said Dr. Brindley. "CRISPR/Cas9 is a tool that may be used to limit the impact of these infections. As we work to better understand how these parasites invade and damage our bodies through this new technology, we will find new ideas for treatment and disease control."

Related Links:
George Washington University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.