We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Neighbor Cell Signals Cause Function Change in Response

By LabMedica International staff writers
Posted on 14 Jan 2019
A molecular mechanism has been identified that maintains cell identity via an active process, which is mediated by repressive signals released by neighboring cells that curb an intrinsic trend of differentiated cells to change.

Investigators at the University of Bergen (Norway) and their collaborators were working with a mouse diabetes model as part of their study of the forces that restrict regeneration and maintain cell identity following injury. More...
In the diabetes model, following beta-cell loss, 1–2% of the glucagon-producing alpha-cells spontaneously began producing insulin. Normally, in the pancreas alpha-cells produce glucagon, and this increases blood sugar levels. Beta-cells produce insulin, which decreases glucagon levels while delta-cells produce somatostatin, which controls the regulation of the alpha and beta cells.

The investigators reported in the October 22, 2018, issue of the journal Nature Cell Biology that adaptive alpha-cell identity changes were blocked by intra-islet insulin- and Smoothened-mediated signaling, among others. Smoothened is a Class Frizzled (Class F) G protein-coupled receptor that is a component of the hedgehog signaling pathway.

The combination of beta-cell loss or insulin-signaling inhibition together with Smoothened inactivation in alpha- or delta-cells stimulated insulin production in a greater number of alpha-cells. Thus, the maintenance of cell identity was seen to be an active process mediated by repressive signals, which were released by neighboring cells and curbed an intrinsic trend of differentiated cells to change.

"We are possibly facing the start of a totally new form of treatment for diabetes, where the body can produce its own insulin, with some start-up help," said contributing author Dr. Luiza Ghila, a researcher in the department of clinical science at the University of Bergen. "If we gain more knowledge about the mechanisms behind this cell flexibility, then we could possibly be able to control the process and change more cells' identities so that more insulin can be produced. Furthermore, the cells' ability to change identity and function may be a decisive discovery in treating other diseases caused by cell death, such as Alzheimer´s disease and cellular damage due to heart attacks."

Related Links:
University of Bergen


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Serological Pipet Controller
PIPETBOY GENIUS
New
cDNA Synthesis Kit
Ultimate cDNA Synthesis Kit
New
Droplet Digital PCR System
QX600 AutoDG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Gut microbes may help in recognizing and treating pancreatic cancer (Photo courtesy of Adobe Stock)

Gut Microbes Could Enable Early Detection and Treatment of Pancreatic Cancer

Pancreatic cancer remains one of the most serious and challenging diseases in oncology due to its difficulty in detection and limited treatment options. Now, a new international collaborative study suggests... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Microbiology

view channel
Image: The U.S. FDA-cleared IntelliSep rapid host response diagnostic represents a breakthrough in sepsis care (Photo courtesy of Cytovale)

Rapid Diagnostic Test Slashes Sepsis Mortality by 39%

Sepsis remains one of the most challenging and fatal conditions in contemporary healthcare, accounting for nearly one-third of all hospital-related deaths in the United States. In emergency departments... Read more

Industry

view channel
Image: The knowledge transfer partnership will further develop technology to rapidly diagnose serious and high-risk infectious diseases (Photo courtesy of Aston University)

Aston University and BG Research Partner to Commercialize Groundbreaking Medical Diagnostic

Technology that can rapidly diagnose high-consequence infectious diseases will take a major step forward towards commercialization, thanks to a new partnership. A Knowledge Transfer Partnership (KTP)... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.