We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




RNA Sequencing Offers Greater Capacity for Recovery and Analysis of Molecules

By LabMedica International staff writers
Posted on 01 Jan 2019
A recent paper described a significant modification that enables Drop-seq single-cell RNA sequencing technology to recover and analyze a more diverse variety of molecules.

Drop-seq methodology involves encapsulating single cells with single barcoded beads in nanoliter-sized droplets. More...
The barcoded oligo bead library is constructed such that each bead has a unique DNA barcode sequence, but within a bead, the thousands of copies of oligo all contain an identical barcode sequence. The 3′ end of the oligo has a poly(dT) stretch that captures messenger RNA (mRNA) and primes reverse transcription. Once encapsulated, the cell is broken open and the mRNA is captured on the bead, resulting in single-cell transcriptomes attached to microparticles. The RNA is converted to DNA, amplified and sequenced. The major drawback to the technique is that it can only identify molecules of mRNA, which limits the potential scope of analyses.

Investigators at Cornell University (Ithaca, NY, USA) described in the December 17, 2018, online edition of the journal Nature Methods a modification to Drop-seq. Their DART-seq (droplet-assisted RNA targeting by single-cell sequencing) method was depicted as being a versatile technology that enabled multiplexed amplicon sequencing and transcriptome profiling in single cells. The modification was accomplished by enzymatically customizing the beads prior to performing conventional Drop-seq analysis, which allowed for the recovery and analysis of a greater variety of molecules.

The investigators applied DART-seq to simultaneously characterize the non-A-tailed transcripts of a segmented dsRNA virus and the transcriptome of the infected cell. In addition, they used DART-seq to simultaneously determine the natively paired, variable region heavy and light chain amplicons and the transcriptome of B-lymphocytes.

"Those technologies are very popular because they have lowered the cost of these types of analyses and sort of democratized them, made them very cheap and easy to do for many labs," said senior author Dr. Iwijin De Vlaminck, assistant professor in of biomedical engineering at Cornell University.

Related Links:
Cornell University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Gold Member
Troponin T QC
Troponin T Quality Control
New
Uric Acid Meter
PA-16
New
STI Test
REALQUALITY RQ-SevenSTI
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.