We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Targeted System Uses Conjugated Bacteria to Deliver Drugs

By LabMedica International staff writers
Posted on 31 Dec 2018
A novel delivery system for anti-cancer chemotherapeutic agents utilizes attenuated bacteria that have been conjugated to polymeric nanoparticles to transport the drugs via a targeted, passive process.

Cancer drug delivery is problematic due to systemic toxicity of the drugs and inadequate movement of such nanotherapeutic agents to cells in sites distant from blood vessels. More...
In an attempt to solve these problems, investigators at Virginia Tech (Blacksburg, VA, USA) proposed that an attenuated bacterium could be exploited for autonomous targeted delivery of nanotherapeutics to currently unreachable sites.

For this purpose, the investigators selected Salmonella enterica serovar Typhimurium VNP20009 (S. typhimurium), as it had been thoroughly studied and had been tested successfully in a phase one clinical trial. For the current study, a nanoscale bacteria‐enabled autonomous drug delivery system (NanoBEADS) was developed in which the functional capabilities of the tumor‐targeting S. typhimurium were interfaced with poly(lactic‐co‐glycolic acid) nanoparticles. Poly(lactic-co-glycolic acid) is a copolymer which is used in a host of [U.S.] Food and Drug Administration approved therapeutic devices, owing to its biodegradability and biocompatibility.

The investigators evaluated the impact of nanoparticle conjugation on the ability of NanoBEADS' to invade cancer cells. This was done by examining intratumoral transport of beads in three-dimensional tumor spheroids in vitro, and the biodistribution of the beads in a mammary tumor model in vivo. The investigators reported in the December 5, 2018, online edition of the journal Advanced Science that intercellular self‐replication and translocation were the dominant mechanisms of bacteria intratumoral penetration and that nanoparticle conjugation did not impede the bacteria's intratumoral transport performance.

The investigators further demonstrated that NanoBEADS enhanced nanoparticle retention and distribution in solid tumors by up to a remarkable 100‐fold without requiring any externally applied driving force or control input.

"You can make the most amazing drugs, but if you cannot deliver it where it needs to go, it cannot be very effective," said senior author Dr. Bahareh Behkam, associate professor of mechanical engineering at Virginia Tech. "By improving the delivery, you can enhance efficacy."

"Its (salmonella's) job as a pathogen is to penetrate through the tissue," said Dr. Behkam. "What we thought is if bacteria are so good at moving through the tissue, how about coupling nanomedicine with the bacterium to carry that medicine much farther than it would passively diffuse on its own?"

Related Links:
Virginia Tech


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A simple blood sample that allows DNA methylation could identify epigenetic biomarkers (Photo courtesy of 123RF)

Simple Blood Sample Could Identify Epigenetic Biomarkers to Predict CVD Risk in Type 2 Diabetes

People with type 2 diabetes face up to four times higher risk of cardiovascular events such as heart attacks, strokes, and angina compared to individuals without the condition. Yet, current tools used... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The new technology could predict who will benefit from immunotherapy (Photo courtesy of Max Delbrück Center)

New Technology Deciphers Immune Cell Communication to Predict Immunotherapy Response

A healthy immune system depends on complex communication between specialized cell types that detect, alert, and eliminate harmful threats. When these immune signaling pathways break down, the result can... Read more

Microbiology

view channel
Image: MycoMEIA Aspergillus Assay is the first FDA-cleared urine-based test for invasive aspergillosis (Photo courtesy of Pearl Diagnostics)

Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People

Invasive Aspergillosis (IA), a life-threatening fungal infection, poses a serious threat to immunocompromised individuals, especially those with hematologic malignancies, transplants, or severe lung diseases.... Read more

Industry

view channel
Image: The acquisition of Exosome Diagnostics adds the ExoDx Prostate test to Mdxhealth’s portfolio (Photo courtesy of Bio-Techne)

Bio-Techne Divests Exosome Diagnostics to Reposition Product Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has entered into an agreement with Mdxhealth SA (Irvine, CA, USA), which will acquire its Exosome Diagnostics Inc. (Waltham, MA, US) business, including the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.