We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mutation in p53 Suppressor Gene Drives Tumor Development

By LabMedica International staff writers
Posted on 19 Nov 2018
Cancer researchers have outlined a molecular mechanism that promotes tumor development and growth by interfering with the normal expression of the p53 suppressor gene.

Mutations in p53's TRP53 (transformation-related protein 53), prevalent in human cancers, have been reported to drive tumor development through dominant-negative effects over normal wild-type TRP53 function.

A mutation that leads to a mutant protein that disrupts the activity of the wild-type protein is known as a dominant-negative mutation. More...
This mutation may arise in a human somatic cell and provide a proliferative advantage to the mutant cell, leading to its clonal expansion. For instance, a dominant-negative mutation in a gene necessary for the normal process of programmed cell death (apoptosis) in response to DNA damage can make the cell resistant to apoptosis. This will allow proliferation of the clone even when excessive DNA damage is present. Such dominant-negative mutations occur in the tumor suppressor gene p53. Dominant-negative p53 mutations occur in a number of different types of cancer and pre-cancerous lesions.

Investigators at the Walter and Eliza Hall Institute (Melbourne, Australia) reported in the November 1, 2018, issue of the journal Genes & Development that RNA sequencing of lymphatic cancers had shown that the mutant TRP53 dominant-negative effect did not globally repress wild-type TRP53 function but disproportionately impacted a subset of wild-type TRP53 target genes. Accordingly, TRP53 mutant proteins impaired pathways for DNA repair, proliferation, and metabolism in premalignant cells.

"Genetic defects in p53 are found in half of all human cancers, but exactly how these changes disrupt p53 function has long been a mystery," said senior author Dr. Gemma Kelly, a research scientist at the Walter and Eliza Hall Institute. "p53 plays a critical role in many pathways that prevent cancer, such as repairing DNA or killing cells if they have irreparable DNA damage."

"Early during cancer development, one copy of the gene may undergo a sudden and permanent change through mutation, while the other copy of the gene remains normal. This results in the cell making a mixture of normal and mutant versions of the p53 protein," said Dr. Kelly. "We found that the mutant p53 protein can bind to and "tackle" the normal p53 protein, blocking it from performing protective roles such as DNA repair. This makes the cell more likely to undergo further genetic changes that accelerate tumor development.

Established tumors have often lost the normal copy of their p53 gene and only produce mutant p53 protein. If mutant p53 acts by tackling normal p53, then it may no longer play a role in established tumors where no normal p53 is produced. This would mean that drugs that block mutant p53 would have no clinical benefit. Conversely, if mutant p53 has new, cancer-promoting activities of its own in established tumors, then a drug that specifically blocks mutant p53 could be beneficial for treating thousands of patients."

Related Links:
Walter and Eliza Hall Institute


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Hemodynamic System Monitor
OptoMonitor
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A simple blood sample that allows DNA methylation could identify epigenetic biomarkers (Photo courtesy of 123RF)

Simple Blood Sample Could Identify Epigenetic Biomarkers to Predict CVD Risk in Type 2 Diabetes

People with type 2 diabetes face up to four times higher risk of cardiovascular events such as heart attacks, strokes, and angina compared to individuals without the condition. Yet, current tools used... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The new technology could predict who will benefit from immunotherapy (Photo courtesy of Max Delbrück Center)

New Technology Deciphers Immune Cell Communication to Predict Immunotherapy Response

A healthy immune system depends on complex communication between specialized cell types that detect, alert, and eliminate harmful threats. When these immune signaling pathways break down, the result can... Read more

Microbiology

view channel
Image: MycoMEIA Aspergillus Assay is the first FDA-cleared urine-based test for invasive aspergillosis (Photo courtesy of Pearl Diagnostics)

Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People

Invasive Aspergillosis (IA), a life-threatening fungal infection, poses a serious threat to immunocompromised individuals, especially those with hematologic malignancies, transplants, or severe lung diseases.... Read more

Industry

view channel
Image: The acquisition of Exosome Diagnostics adds the ExoDx Prostate test to Mdxhealth’s portfolio (Photo courtesy of Bio-Techne)

Bio-Techne Divests Exosome Diagnostics to Reposition Product Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has entered into an agreement with Mdxhealth SA (Irvine, CA, USA), which will acquire its Exosome Diagnostics Inc. (Waltham, MA, US) business, including the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.