We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Functional 3D Neural Network Models Generated from Stem Cells

By LabMedica International staff writers
Posted on 01 Nov 2018
A team of biomedical engineers worked with human induced pluripotent stem cells (iPSCs) to develop three-dimensional (3D) in vitro human neural network model systems.

Three-dimensional in vitro cell and tissue culture models allow for the exploration of mechanisms of organ development, cellular interactions, and disease progression within defined environments. More...
Investigators at Tufts University (Boston, MA, USA) used iPSCs from normal and diseased individuals to populate a three-dimensional matrix of silk protein and collagen to create such models, which would mimic structural and functional features of the brain and demonstrate neural activity.

The current work was based on previous studies where primary rodent neurons were successfully grown in a similar three-dimensional system. The model was adapted to human induced pluripotent stem cells, allowing for a more direct exploration of the human condition.

The investigators reported in the October 1, 2018, online edition of the journal ACS Biomaterials Science & Engineering that these tissue cultures comprised diverse cell populations, including neurons and astroglial cells, interacting in three-dimensions and exhibited spontaneous neural activity confirmed through electrophysiological recordings and calcium imaging over at least nine months. Compared to growing and culturing cells in two dimensions, the three-dimensional matrix produced a significantly more complete mix of cells found in neural tissue, with the appropriate morphology and expression of receptors and neurotransmitters.

This approach, which was tested with stem cells derived from healthy individuals as well as from Alzheimer’s and Parkinson’s disease patients, allowed for the direct integration of pluripotent stem cells into the three-dimensional construct, bypassing early neural differentiation steps. This streamlined process, in combination with the longevity of the cultures, provided a system that could be manipulated to support a variety of experimental applications such as investigating drug targets in neurodegenerative diseases.

"We found the right conditions to get the iPSCs to differentiate into a number of different neural subtypes, as well as astrocytes that support the growing neural networks," said senior author Dr. David L. Kaplan, professor of biomedical engineering at Tufts University. "The silk-collagen scaffolds provide the right environment to produce cells with the genetic signatures and electrical signaling found in native neuronal tissues."

Related Links:
Tufts University


New
Gold Member
Hybrid Pipette
SWITCH
Portable Electronic Pipette
Mini 96
ESR Analyzer
TEST1 2.0
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.