We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Functional 3D Neural Network Models Generated from Stem Cells

By LabMedica International staff writers
Posted on 01 Nov 2018
A team of biomedical engineers worked with human induced pluripotent stem cells (iPSCs) to develop three-dimensional (3D) in vitro human neural network model systems.

Three-dimensional in vitro cell and tissue culture models allow for the exploration of mechanisms of organ development, cellular interactions, and disease progression within defined environments. More...
Investigators at Tufts University (Boston, MA, USA) used iPSCs from normal and diseased individuals to populate a three-dimensional matrix of silk protein and collagen to create such models, which would mimic structural and functional features of the brain and demonstrate neural activity.

The current work was based on previous studies where primary rodent neurons were successfully grown in a similar three-dimensional system. The model was adapted to human induced pluripotent stem cells, allowing for a more direct exploration of the human condition.

The investigators reported in the October 1, 2018, online edition of the journal ACS Biomaterials Science & Engineering that these tissue cultures comprised diverse cell populations, including neurons and astroglial cells, interacting in three-dimensions and exhibited spontaneous neural activity confirmed through electrophysiological recordings and calcium imaging over at least nine months. Compared to growing and culturing cells in two dimensions, the three-dimensional matrix produced a significantly more complete mix of cells found in neural tissue, with the appropriate morphology and expression of receptors and neurotransmitters.

This approach, which was tested with stem cells derived from healthy individuals as well as from Alzheimer’s and Parkinson’s disease patients, allowed for the direct integration of pluripotent stem cells into the three-dimensional construct, bypassing early neural differentiation steps. This streamlined process, in combination with the longevity of the cultures, provided a system that could be manipulated to support a variety of experimental applications such as investigating drug targets in neurodegenerative diseases.

"We found the right conditions to get the iPSCs to differentiate into a number of different neural subtypes, as well as astrocytes that support the growing neural networks," said senior author Dr. David L. Kaplan, professor of biomedical engineering at Tufts University. "The silk-collagen scaffolds provide the right environment to produce cells with the genetic signatures and electrical signaling found in native neuronal tissues."

Related Links:
Tufts University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Candida Glabrata Test
ELIchrom Glabrata
New
Staining System
RAL DIFF-QUIK
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.