We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Researchers Aim to Reduce Variability of Gene Therapy Vectors

By LabMedica International staff writers
Posted on 30 Oct 2018
A recently published study illuminated a previously unknown aspect of adeno-associated virus capsid heterogeneity and highlighted its importance in the development of these vectors for use in gene therapy applications.

Adeno-associated virus (AAV) is a small virus that infects humans and some other primate species. More...
AAV is not currently known to cause disease. The virus causes a very mild immune response, lending further support to its apparent lack of pathogenicity. In many cases, AAV vectors integrate into the host cell genome, which can be important for certain applications, but can also have unwanted consequences. Gene therapy vectors using AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell, although in the native virus some integration of virally carried genes into the host genome does occur. These features make AAV a very attractive candidate for creating viral vectors for gene therapy.

Post-translational modification of the AAV capsids is a poorly understood factor in the development of these viral vectors into pharmaceutical products. In this regard, investigators at the University of Pennsylvania (Philadelphia, USA) reported the extensive capsid deamidation of adeno-associated virus serotype eight and seven other diverse adeno-associated virus serotypes, with supporting evidence from structural, biochemical, and mass spectrometry approaches.

The investigators reported in the October 18, 2018, online edition of the journal Molecular Therapy that the extent of deamidation at each site depended on the vector’s age and multiple primary-sequence and three-dimensional structural factors. However, the extent of deamidation was largely independent of the vector recovery and purification conditions.

The investigators also examined mutational strategies to stabilize side-chain amides, improving vector transduction and reducing the lot-to-lot molecular variability that presents a key concern in biologics manufacturing.

"This study determined how a viral vector can lose activity during harvest and purification in the manufacturing process," said senior author Dr. James Wilson, professor of medicine at the University of Pennsylvania. "That discovery led us to uncover new ways to prevent this from happening in order to deliver gene therapy treatments in a safer and more efficient way. Our discovery of these functionally important modifications reinforces the significance of improved analytical assays to characterize AAV products."

Related Links:
University of Pennsylvania


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.