Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Long Non-Coding RNA Identified Modulates Synaptic Morphology and Function

By LabMedica International staff writers
Posted on 24 Oct 2018
A specific long non-coding RNA that exists in the hippocampal neurons of the brain was found to be enriched in the cells' nuclei and was shown to be necessary for modulating synaptic communication, synapse density, synapse morphology, and dendritic tree complexity.

Long non-coding RNAs (lncRNAs) are considered to be non-protein coding transcripts longer than 200 nucleotides. More...
This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study. Their name notwithstanding, long non-coding RNAs (lncRNAs) have been found to actually encode synthesis of small polypeptides that can fine-tune the activity of critical cellular components.

Despite the growing evidence suggesting that lncRNAs are critical regulators of several biological processes, their functions in the nervous system remain elusive. However, a recent study carried out by investigators at the Scripps Research Institute (Jupiter, FL, USA) begins to clarify the function of these molecules.

The investigators reported in the October 8, 2018, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America that the lncRNA GM12371 played a major role in regulating synaptic transmission, synapse density, and dendritic branching in primary hippocampal neurons. GM12371 expression was regulated by cAMP signaling and was critical for the activity regulated synaptic transmission. Importantly, GM12371 was associated with transcriptionally active chromatin and regulated expression of several genes involved in neuronal growth and development.

"Long noncoding RNAs are often described as "the dark matter of the genome". So, systematic interrogation of their function will illuminate molecular mechanisms of brain development, storage of long-term memories, and degradation of memory during aging and dementia," said senior author Dr. Sathyanarayanan Puthanveettil, associate professor of neuroscience at the Scripps Research Institute. "Both coding and noncoding RNAs are increasingly viewed as druggable targets. Identifying their specific roles in the fundamental biology of functioning of neural circuits might eventually open new ways of treating neuropsychiatric disorders, such as autism and Alzheimer's disease."

Related Links:
Scripps Research Institute


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Gold Member
Hematology System
Medonic M16C
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.