We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genetically Engineered Zika Virus Slows Tumor Growth in Model

By LabMedica International staff writers
Posted on 11 Oct 2018
Injecting mice carrying human glioblastoma tumors with modified Zika virus was shown to significantly reduce intracerebral tumor growth and prolong animal survival.

Glioblastoma is the most common primary tumor of the central nervous system and is almost always fatal. More...
The aggressive invasion of glioblastoma cells into the surrounding normal brain makes complete surgical removal impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Treatment of glioblastoma usually comprises surgical removal of the tumor followed by radiation treatment and chemotherapy using the drug temozolomide (TMZ). These treatments usually fail, mainly due to the presence of a cell subpopulation called glioma stem cells (GSCs), which are resistant to radiation and chemotherapy and are capable of self-renewal and tumor generation.

Previous studies had shown that Zika virus (ZIKV) attacked and killed GSCs grown in culture and in a mouse model of glioblastoma. To expand the scope of these earlier findings, investigators at the University of Texas Medical Branch (Galveston, USA) and Chinese collaborators developed a genetically modified live attenuated ZIKV vaccine (ZIKV-LAV) that contained a 10-nucleotide deletion in the 3′ untranslated region (3′UTR) of the viral genome. This method for engineering ZIKV eliminated its virulence but maintained its oncolytic activity against GBM.

The goals of this study were to (i) profile the safety of ZIKV-LAV for intracerebral injection, (ii) evaluate the in vivo efficacy of ZIKV-LAV against GBM in a patient-derived GSC orthotopic mouse model, and (iii) define the oncolytic mechanism of ZIKV-LAV during GBM treatment.

The investigators reported in the September 18, 2018, online edition of the journal mBio that intracerebral injection of ZIKV-LAV into mice caused no neurological symptoms or behavioral abnormalities. ZIKV-LAV significantly reduced intracerebral tumor growth and prolonged animal survival by selectively killing GSCs within the tumor. Mechanistically, ZIKV infection elicited antiviral immunity, inflammation, and GSC apoptosis.

"During the Zika epidemic, we learned that the virus preferentially infects neural progenitor cells in the fetus, and causes the devastating microcephaly seen in babies born to infected mothers," said contributing author Dr. Pei-Yong Shi, professor of human genetics at the University of Texas Medical Branch. "As a virologist, I see that we should take advantage of the "bad' side of viruses. They should have a role to play in cancer treatment."

Related Links:
University of Texas Medical Branch


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Clinical Chemistry System
P780
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A simple blood sample that allows DNA methylation could identify epigenetic biomarkers (Photo courtesy of 123RF)

Simple Blood Sample Could Identify Epigenetic Biomarkers to Predict CVD Risk in Type 2 Diabetes

People with type 2 diabetes face up to four times higher risk of cardiovascular events such as heart attacks, strokes, and angina compared to individuals without the condition. Yet, current tools used... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The new technology could predict who will benefit from immunotherapy (Photo courtesy of Max Delbrück Center)

New Technology Deciphers Immune Cell Communication to Predict Immunotherapy Response

A healthy immune system depends on complex communication between specialized cell types that detect, alert, and eliminate harmful threats. When these immune signaling pathways break down, the result can... Read more

Microbiology

view channel
Image: MycoMEIA Aspergillus Assay is the first FDA-cleared urine-based test for invasive aspergillosis (Photo courtesy of Pearl Diagnostics)

Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People

Invasive Aspergillosis (IA), a life-threatening fungal infection, poses a serious threat to immunocompromised individuals, especially those with hematologic malignancies, transplants, or severe lung diseases.... Read more

Industry

view channel
Image: The acquisition of Exosome Diagnostics adds the ExoDx Prostate test to Mdxhealth’s portfolio (Photo courtesy of Bio-Techne)

Bio-Techne Divests Exosome Diagnostics to Reposition Product Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has entered into an agreement with Mdxhealth SA (Irvine, CA, USA), which will acquire its Exosome Diagnostics Inc. (Waltham, MA, US) business, including the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.