We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mechanical Tissue Resuscitation Technology Shows Promise Preventing Cell Death Following Brain Injury

By LabMedica International staff writers
Posted on 24 Apr 2012
Print article
Scientists looking for an effective treatment for traumatic brain injury have found that the size and extent of damaged tissue can be reduced by using a new device to prevent cell death.

The research, the focus of a three-year, USD 1.5 million study funded by the US Department of Defense (Arlington, VA, USA), was published April 2012 in the journal Neurosurgery. The technology evaluated in lab rats, is called mechanical tissue resuscitation (MTR) and uses negative pressure to create an environment that fosters cell survival.

Louis C. Argenta, MD, and Michael Morykwas, PhD, professors from Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) department of plastic surgery and reconstructive surgery, and a multidisciplinary group of colleagues at Wake Forest Baptist, have more than 15 years of experience working with negative pressure devices to successfully treat wounds and burns. In this study, the team used MTR to remove fluid and other toxins that cause cell death from an injury site deep in the brain.

When the brain is injured by blunt force, explosion, or other trauma, the cells at the impact site are irreversibly damaged and they die. In the region surrounding the wound, injured cells release toxic compounds that cause the brain to swell and restrict blood flow and oxygen levels. This process results in more extensive cell death, which affects brain function. Dr. Argenta and his colleagues targeted these injured brain cells to determine if removing the fluid and toxic substances that lead to cell death could help improve survival of the damaged cells.

In the study, a bioengineered material matrix was positioned directly on the injured area in the brain and attached to a flexible tube connected to a microcomputer vacuum pump. The pump delivered a carefully controlled vacuum to the injured brain for 72 hours drawing fluid from the injury site.

The brain injuries treated with the device showed a considerable drop in brain swelling and release of toxic substances when compared to untreated injuries. Brains treated with the device revealed that over 50% more brain tissue could be preserved compared to nontreated animals. Behavioral function tests demonstrated that function was returned more rapidly in the MTR treated group.

“We have been very gratified by the results thus far. This study demonstrates that by working together a multidisciplinary group of researchers can develop new technology that could be used one day at the hospital bedside,” said Dr. Argenta.

The researchers are now assessing the same technology in stroke and brain hemorrhage models. “The Department of Defense has identified this as an area that is ripe for medical advancement,” said study coauthor Stephen B. Tatter, MD, PhD, professor of neurosurgery at Wake Forest Baptist Medical Center. “We believe it will soon be ready for a clinical trial.”

Related Links:

Wake Forest Baptist Medical Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.