We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mechanical Tissue Resuscitation Technology Shows Promise Preventing Cell Death Following Brain Injury

By LabMedica International staff writers
Posted on 24 Apr 2012
Scientists looking for an effective treatment for traumatic brain injury have found that the size and extent of damaged tissue can be reduced by using a new device to prevent cell death.

The research, the focus of a three-year, USD 1.5 million study funded by the US Department of Defense (Arlington, VA, USA), was published April 2012 in the journal Neurosurgery. More...
The technology evaluated in lab rats, is called mechanical tissue resuscitation (MTR) and uses negative pressure to create an environment that fosters cell survival.

Louis C. Argenta, MD, and Michael Morykwas, PhD, professors from Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) department of plastic surgery and reconstructive surgery, and a multidisciplinary group of colleagues at Wake Forest Baptist, have more than 15 years of experience working with negative pressure devices to successfully treat wounds and burns. In this study, the team used MTR to remove fluid and other toxins that cause cell death from an injury site deep in the brain.

When the brain is injured by blunt force, explosion, or other trauma, the cells at the impact site are irreversibly damaged and they die. In the region surrounding the wound, injured cells release toxic compounds that cause the brain to swell and restrict blood flow and oxygen levels. This process results in more extensive cell death, which affects brain function. Dr. Argenta and his colleagues targeted these injured brain cells to determine if removing the fluid and toxic substances that lead to cell death could help improve survival of the damaged cells.

In the study, a bioengineered material matrix was positioned directly on the injured area in the brain and attached to a flexible tube connected to a microcomputer vacuum pump. The pump delivered a carefully controlled vacuum to the injured brain for 72 hours drawing fluid from the injury site.

The brain injuries treated with the device showed a considerable drop in brain swelling and release of toxic substances when compared to untreated injuries. Brains treated with the device revealed that over 50% more brain tissue could be preserved compared to nontreated animals. Behavioral function tests demonstrated that function was returned more rapidly in the MTR treated group.

“We have been very gratified by the results thus far. This study demonstrates that by working together a multidisciplinary group of researchers can develop new technology that could be used one day at the hospital bedside,” said Dr. Argenta.

The researchers are now assessing the same technology in stroke and brain hemorrhage models. “The Department of Defense has identified this as an area that is ripe for medical advancement,” said study coauthor Stephen B. Tatter, MD, PhD, professor of neurosurgery at Wake Forest Baptist Medical Center. “We believe it will soon be ready for a clinical trial.”

Related Links:

Wake Forest Baptist Medical Center



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The cell-based tests bring artificial intelligence to transplant outcome care (Photo courtesy of iStock)

AI-Enhanced Cell-Based Blood Tests to Improve Predictive Accuracy for Complex Transplant Outcomes

Managing immunosuppressive drugs in transplant patients is a delicate challenge. Insufficient medication can lead to rejection, which may be cell- or antibody-mediated, while excess immunosuppression raises... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: A saliva test can help predict future metabolic health concerns including diabetes and obesity (Photo courtesy of 123RF)

Saliva Test to Enable Early Detection of Diabetes and Obesity

Type 2 diabetes affects about 400 million people globally and is typically diagnosed through elevated blood glucose levels. However, conditions like insulin resistance and hyperinsulinemia may begin developing... Read more

Industry

view channel
Image: Alzheimer’s Association has released its first clinical practice guideline for blood-based biomarker tests (Photo courtesy of Alzheimer’s Association)

New Clinical Guidelines Recommend Use of Blood Tests Instead of Brain Scans for Alzheimer’s Diagnosis

Alzheimer’s disease is a progressive neurodegenerative condition that remains challenging to diagnose early and accurately, particularly in individuals with cognitive impairment. Despite the availability... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.