We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Safer, Portable and Low-Cost Imaging Solution to Revolutionize Biomedical Diagnostics

By LabMedica International staff writers
Posted on 18 Jul 2025

In diagnosing diseases and monitoring treatment, accurate and quick detection of temperature within biological tissues can be crucial, especially in early disease detection. More...

Conventional methods such as fMRI and PET scans are costly and require specialized equipment and training. Moreover, these techniques often require invasive procedures that may not be suitable for all patients or situations. This presents challenges in obtaining real-time, non-invasive insights into tissue conditions, such as temperature, which is vital for understanding disease progression or treatment effectiveness. Researchers have now developed a new method that uses light and artificial intelligence (AI) to map temperature within biological tissue in three dimensions. This technique could transform how temperature is monitored inside the human body, offering a non-invasive, less costly, and more portable solution compared to traditional imaging technologies.

The solution, developed by researchers from Ca’ Foscari University of Venice (Venice, Italy) and Universidad Autónoma de Madrid (Madrid, Spain), utilizes luminescent nanothermometers—tiny particles made of silver sulfide (Ag₂S)—which glow in the near-infrared when exposed to light. These nanoparticles are sensitive to temperature and the depth of biological tissue they pass through. A dual-layer neural network trained on hyperspectral images enables the system to reconstruct accurate three-dimensional thermal maps of tissue. The approach turns optical distortions, typically considered a problem in imaging, into a valuable source of information, allowing for accurate thermal measurements. This method could extend beyond temperature sensing, with the potential to measure other parameters like oxygen concentration and pH by adjusting the optical properties of the nanoparticles.

Proof-of-concept experiments demonstrated that this system could detect temperature gradients in both artificial tissue models and real biological samples. In one experiment, the system successfully mapped blood vessels in a living animal, marking the first time high-resolution 3D thermal imaging had been achieved using light alone. The findings, published in Nature Communications, suggest promising applications, with the potential to offer a portable, safer, and less expensive diagnostic tool for use in various settings, even outside of hospitals. Looking ahead, researchers plan to expand this approach to monitor additional intracellular parameters such as temperature, pH, and oxygen, with faster speed and better resolution. The researchers also intend to use this technology for medical diagnostics, biotechnology, and even astrobiology.

“We believe this is just the beginning,” said Erving Ximendes, assistant professor at the Universidad Autónoma de Madrid. “Machine learning offers a powerful tool for navigating the complexity of real biological systems—far beyond what traditional models can achieve.”

Related Links:
Ca' Foscari University of Venice
Universidad Autónoma de Madrid


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.