We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Diagnostic Criteria for Breast Cancer Could Lead to Fewer Benign Biopsies

By LabMedica International staff writers
Posted on 25 Jul 2025

Dense calcifications are very common in breast tissue and are easily visible on mammograms, which doctors use to classify them as benign, probably benign, or suspicious. More...

However, most biopsies of spots deemed suspicious end up being benign, meaning patients often undergo unnecessary and painful procedures. The challenge lies in distinguishing benign breast disease (BBD) from ductal carcinoma in situ (DCIS), as their calcium phosphate deposits often appear identical on imaging. The inability to make precise distinctions has led to overdiagnosis and overtreatment. Now, a new study has provided detailed descriptions of how calcifications form in breast tissue, revealing key differences between benign and cancerous formations and offering insights that could guide improved diagnostic criteria.

In the study, researchers at the University of Illinois Urbana-Champaign (Urbana, IL, USA) and Mayo Clinic (Rochester, MN, USA) used 12 different analytical techniques—including light, laser, and electron microscopy as well as X-ray and Raman spectroscopy—to examine tissue samples of BBD and DCIS that had been surgically removed in a long-term Mayo Clinic study. Their approach integrated expertise in geology, cancer biology, and microscopy, forming a multidisciplinary framework termed “GeoBioMed.” This holistic strategy enabled the researchers to uncover mineral characteristics of the calcifications that had been overlooked by traditional methods.

The study found that the deposits were made of amorphous calcium phosphate (ACP), not the previously assumed crystalline hydroxyapatite. These ACP structures formed through a process of coalescing spherules into nodules, which then incorporated proteins, waxes, cholesterol, and even entombed cells. BBD nodules were more spherical and had concentric layers, whereas cancerous calcifications were more elongated, irregular, and in some cases resembled fossilization. Published in Scientific Reports, the research introduces a new classification scheme and suggests that drugs known to dissolve ACP could be repurposed for treatment, potentially preventing unnecessary biopsies. The team now plans to study calcifications in invasive breast cancer and explore therapeutic testing using their experimental GeoBioCell microfluidic device.

“Our aim is to predict and ultimately prevent breast calcifications, reduce inaccurate mammogram diagnoses and lay a framework for therapy development,” said Professor Bruce Fouke from the University of Illinois Urbana-Champaign.

Related Links:
University of Illinois Urbana-Champaign
Mayo Clinic


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Capillary Blood Collection Tube
IMPROMINI M3
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.