We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Radioactive Antibody Fragment Used as Tracer to Identify Artery Deposits

By LabMedica International staff writers
Posted on 10 Apr 2012
A newly designed radioactive antibody fragment may allow the identification of fat and debris deposits in artery walls that are most liable to rupture and cause heart attacks, according to a new research. More...


Of the more than 17 million annual cardiovascular deaths worldwide, most result from ruptured plaque. “The detection of vulnerable coronary plaques is a major clinical challenge because it would allow preventive patient management prior to a heart attack,” said Alexis Broisat, PhD, the study’s lead author and a postdoctoral fellow at the University of Grenoble (France). “In clinical practice, there is currently no early, reliable, and noninvasive tool allowing such detection.”

The researchers created radioactive antibody fragments called nanobodies that attached to particles in artery plaque called vascular cell adhesion molecule-1 (VCAM1). “Nanobodies constitute a promising new class of radiotracers for cardiovascular imaging,” Dr. Broisat said.

Ongoing inflammation in a plaque deposit is a key sign that the plaque may rupture, and VCAM1 plays an important role in the inflammation process. In laboratory experiments, the radioactive nanobodies were attracted to VCAM-1. In animal lab tests, researchers injected a solution containing the radioactive particles into the blood stream of mice with artery plaques. They then used a single-proton emission computed tomography/computed tomography (SPECT/CT) imaging scan to detect the radioactive particles.

The nanobodies attached to VCAM-1 expressing tissues. After radiolabeling, some of the nanobodies remained stable in the laboratory and in mouse blood for six hours. This allowed imaging of the mice up to three hours after nanobody injection. These scans revealed plaques in the animals’ aortic arches.

If approved for human use, clinicians can inject nanobodies into patients to determine if they are at risk of plaque rupture. “The early detection of trouble looming ahead could trigger steps for intervention, possibly involving the aggressive modulation of risk factors,” according to an editorial accompanying the report by Matthias Nahrendorf, MD, PhD, Jason R. McCarthy, PhD, and Peter Libby, MD, of Harvard Medical School (Boston, MA, USA).

Before the imaging concept can be used regularly, researchers must conduct toxicology studies, produce clinical-quality material, and determine whether the radiotracer technique is safe, beneficial and cost effective. Dr. Broisat and his colleagues are planning clinical investigation into the radiotracer technology to address these issues, including whether the anti-VCAM1 nanobodies can generate adverse immune system reactions in people.

The research findings were published March 30, 2012, in the journal Circulation Research, an American Heart Association journal.

Related Links:

University of Grenoble
Harvard Medical School




Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.