We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App

Stress-Induced tRNA Fragments Prove Early Predictors of Epileptic Seizures

By LabMedica International staff writers
Posted on 24 Jun 2019
Print article
: A tertiary structure of transfer RNA (tRNA) (Photo courtesy of Wikimedia Commons).
: A tertiary structure of transfer RNA (tRNA) (Photo courtesy of Wikimedia Commons).
Elevated levels of stress-induced fragments of transfer RNA in the blood may serve as biomarkers that indicate potential for an epileptic seizure hours before the event actually occurs.

A transfer RNA (abbreviated tRNA) is an adaptor molecule composed of ribonucleic acid, typically 76 to 90 nucleotides in length, which serves as the physical link between the mRNA and the amino acid sequence of proteins. tRNA does this by carrying an amino acid to the protein synthetic machinery of a cell (ribosome) as directed by a three-nucleotide sequence (codon) in a molecule of mRNA. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code. When cells are stressed, tRNAs are cut into fragments.

Investigators at the Royal College of Surgeons in Ireland (Dublin) and the related biotech company FutureNeuro (Dublin, Ireland) proposed that higher levels of tRNA fragments in the blood might indicate that brain cells were under stress in the build up to a seizure event.

To test this hypothesis, the investigators collected plasma samples during video-EEG monitoring of focal epilepsy patients. Small RNA sequencing identified significant differences in three tRNA fragments (5′GlyGCC, 5′AlaTGC, and 5′GluCTC) between epilepsy patients and control subjects. Levels of these tRNA fragments were higher in pre-seizure than post-seizure samples, suggesting they may serve as biomarkers of seizure risk in epilepsy patients.

The investigators designed PCR-based assays to quantify tRNA fragments in a cohort of pre- and post-seizure plasma samples from focal epilepsy patients and healthy controls. Analysis of the results indicated that tRNA fragments potently distinguished pre- from post-seizure patients. Furthermore, elevated tRNA fragments levels were not detected in patients with psychogenic non-epileptic seizures, and did not result from medication tapering.

"New technologies to remove the unpredictability of uncontrolled seizures for people with epilepsy are a very real possibility," said contributing author Dr. David Henshall, professor of molecular physiology and neuroscience at the Royal College of Surgeons in Ireland. "Building on this research we in FutureNeuro hope to develop a test prototype, similar to a blood sugar monitor that can potentially predict when a seizure might occur."

The tRNA biomarker study was published in the April 30, 2019, online edition of the Journal of Clinical Investigation.

Related Links:
The Royal College of Surgeons in Ireland

Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article


Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more


view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more


view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more


view channel
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has... Read more


view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.