We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Disease-Related Epigenetic Variations Summarized in New DNA Methylation Atlas

By LabMedica International staff writers
Posted on 10 Jun 2019
Print article
Image: A representation of a methylated DNA molecule. The two white spheres represent methyl groups bound to two cytosine nucleotide molecules (Photo courtesy of Wikimedia Commons).
Image: A representation of a methylated DNA molecule. The two white spheres represent methyl groups bound to two cytosine nucleotide molecules (Photo courtesy of Wikimedia Commons).
A new DNA methylation atlas summarized a previously unexplored molecular level of human individuality called correlated regions of systemic interindividual variation (CoRSIVs), which may provide a resource for future population-based investigations into how interindividual epigenetic variation modulates risk of disease.

DNA methylation is an important determinant of human phenotypic variation, but its inherent cell type specificity has impeded progress on this question. At exceptional genomic regions, variation in DNA methylation between individuals occurs systemically. Like genetic variants, these systemic "interindividual" epigenetic variants are stable, can influence phenotype, and can be assessed in any easily obtained DNA sample.

Previous studies identified systemic interindividual variation (SIV) in DNA methylation by genome-scale DNA methylation profiling in multiple tissues from multiple individuals but were limited by the profiling technique and/or the number of tissues and individuals studied.

For the current study, investigators at Baylor College of Medicine (Houston, TX, USA) and Texas Children's Hospital (Houston, USA) used deep whole-genome bisulfite sequencing to measure genomic DNA CpG methylation from tissues representing the three germ layer lineages: thyroid (endoderm), heart (mesoderm), and brain (ectoderm) in samples taken from 10 donors from the NIH Genotype-Tissue Expression (GTEx) program.

The investigators developed a computational algorithm to identify genomic regions at which interindividual variation in DNA methylation was consistent across all three lineages. This approach identified 9926 correlated regions of CoRSIVs. These regions, comprising just 0.1% of the human genome, were inter-correlated over long genomic distances and were associated with genes implicated in a broad range of human disorders and phenotypes. Thus, CoRSIV methylation in one tissue could predict expression of associated genes in other tissues.

"Since these tissues each represent a different layer of the early embryo, we are essentially going back in time to events that occurred during early embryonic development," said senior author Dr. Robert A. Waterland, professor of molecular and human genetics at Baylor College of Medicine. "To map DNA methylation we converted methylation information into a genetic signal, then sequenced the genomes. Because epigenetic marking has the power to stably silence or stably activate genes, any disease that has a genetic basis could equally likely have an epigenetic basis. There is incredible potential for us to understand disease processes from an epigenetic perspective. CoRSIVs are the entryway to that."

The study was published in the June 3, 2019, online edition of the journal Genome Biology.

Related Links:
Baylor College of Medicine
Texas Children's Hospital

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: Rapid and non-invasive analysis of paracetamol overdose using paper arrow-mass spectrometry (Photo courtesy of Dr Simon Maher/University of Liverpool)

New Saliva Test Rapidly Identifies Paracetamol Overdose

Paracetamol is the most widely used medication worldwide, and its easy availability contributes to its frequent misuse and overdose. Overdosing on paracetamol can lead to liver toxicity, requiring hospitalization.... Read more

Hematology

view channel
Image: RHD screening just got easier with single exon NIPT testing (Photo courtesy of Devyser)

Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma

RhD (rhesus D) is a blood group type that can trigger immune responses. Individuals who lack RhD on their red blood cells are classified as RhD-negative. These individuals may produce antibodies against... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: A new test finds bacteria in liquids and indicate their presence by changing color (Photo courtesy of Georgia Kirkos/McMaster University)

New Hands-Free Rapid Test Detects Bacteria in Fluids

Bacteriophages, the most abundant form of life on Earth, are specialized to target and destroy specific types of bacteria. Their natural ability to fight bacteria has long been harnessed to treat infections.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.