We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Large GWAS Pinpoints Ovarian Cancer Risk Genes

By LabMedica International staff writers
Posted on 13 May 2019
Print article
Image: A micrograph of a mucinous ovarian carcinoma (Photo courtesy of Wikimedia Commons).
Image: A micrograph of a mucinous ovarian carcinoma (Photo courtesy of Wikimedia Commons).
Results of a large genome-wide association study identified 34 genes that are associated with an increased risk for developing the earliest stages of ovarian cancer.

The current study, which was carried out by investigators at the University of California, Los Angeles (USA) and the Dana-Farber Cancer Institute (Boston, MA, USA), continued the assessment of large-scale genetic data that had been gathered over a period of more than 10 years by the Ovarian Cancer Association Consortium. Those investigators had found more than 30 regions in the genome associated with ovarian cancer after having compared the genetic profiles of about 25,000 women with ovarian cancer and 45,000 control subjects.

Applying advanced analytical tools, the current team of investigators identified 34 genes that were associated with an increased risk for developing ovarian cancer. Furthermore, this study implicated at least one target gene for six out of 13 distinct genome-wide association study regions and pinpointed 23 new candidate susceptibility genes for high-grade serous ovarian cancer.

"If you detect ovarian cancer really early, then the survival rate is very high, nearly 90% percent," said contributing author Dr. Bogdan Pasaniuc, associate professor of pathology and laboratory medicine at the University of California, Los Angles. "But that does not happen often. Most cases are found at a later stage and survival drops dramatically. That is why we want to understand the genetics behind it - so we can do a better job at predicting who is at a higher risk of developing this cancer."

"Whenever you inherit a piece of DNA from your parents, you do not inherit just every base pair of the genome, you inherit big chunks," said Dr. Pasanuic. "That means that if you inherit a gene mutation in a given region, you inherit the entire region, which can carry 10 to 20 genes at a time. This makes it very hard to pinpoint specific genes from specific regions. With the identification of these genes, we now have a narrow list of genes that can help us better predict ovarian cancer risks in women who may have never known that they were at a higher risk for developing the disease. While we are not there yet, we are hoping this study will lead to better outcomes because we will be able to monitor women earlier, when the cancer is easier to treat."

The ovarian cancer study was published in the May 1, 2019, online edition of the journal Nature Genetics.

Related Links:
University of California, Los Angeles
Dana-Farber Cancer Institute

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Microbiology

view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more

Pathology

view channel
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.