We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Genome-wide Association Study Identifies New Bipolar Disorder Loci

By LabMedica International staff writers
Posted on 13 May 2019
Print article
Image: Brain imaging studies have revealed differences in the volume of various brain regions between patients with bipolar disorder and healthy control subjects (Photo courtesy of Wikimedia Commons).
Image: Brain imaging studies have revealed differences in the volume of various brain regions between patients with bipolar disorder and healthy control subjects (Photo courtesy of Wikimedia Commons).
Results obtained by a large genome-wide association study performed on individuals with bipolar disorder identified 20 new genetic associations involving genes encoding ion channels, neurotransmitter transporters, and synaptic components.

Bipolar disorder, previously known as manic depression, is a mental disorder affecting approximately 60 million people worldwide that causes periods of depression and periods of abnormally elevated mood. The risk of suicide among those with the illness is high at greater than 6% over 20 years, while self-harm occurs in 30-40%. The causes of the disorder are not clearly understood, but both environmental and genetic factors play a role. Many genes of small effect contribute to risk. Environmental risk factors include a history of childhood abuse and long-term stress.

The condition is classified as bipolar I disorder if there has been at least one manic episode, with or without depressive episodes, and as bipolar II disorder if there has been at least one hypomanic episode (but no manic episodes) and one major depressive episode. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder.

To identify genes associated with bipolar disorder, investigators at the Mount Sinai School of Medicine (New York, NY, USA) and at more than 200 collaborating institutions performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 gene loci in an additional 9,412 cases and 137,760 controls.

Analysis of the results revealed 30 loci that were significant genome-wide, including 20 newly identified loci. The significant loci contained genes encoding ion channels, neurotransmitter transporters, and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including those regulating of insulin secretion and endocannabinoid signaling. Eight of the genes linked to bipolar disorder harbored schizophrenia associations as well.

"The crux of this international collaborative study was, in essence, to connect the dots," said first author Dr. Eli Stahl, assistant professor of genetics and psychiatry at Mount Sinai School of Medicine. "By discovering new genes associated with bipolar disorder and demonstrating their overlap with genes found in other psychiatric disorders, we bring ourselves closer to finding the true genetic underpinnings of the disease and improving patient outcomes."

The bipolar disorder GWAS paper was published in the May 1, 2019, online edition of the journal of Nature Genetics.

Related Links:
Mount Sinai School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control

Print article

Channels

Clinical Chemistry

view channel
Image: The new versatile assay has the ability to measure both total and bioavailable cortisol from serum (Photo courtesy of Aarhus University)

Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases

The conventional methods for measuring free cortisol, the body's stress hormone, from blood or saliva are quite demanding and require sample processing. The most common method, therefore, involves collecting... Read more

Molecular Diagnostics

view channel
Image: The simple blood test can measure changes in cellular metabolism arising from pancreatic cancer (Photo courtesy of Metabolomycs)

Groundbreaking Blood Test Offers Early Pancreatic Cancer Diagnosis

Pancreatic cancer ranks as the third leading cause of cancer-related deaths, primarily due to its late detection. Early discovery of the disease, while it's still treatable, could significantly impact... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Pathology

view channel
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique.... Read more

Industry

view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.