We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Genome-wide Association Study Identifies New Bipolar Disorder Loci

By LabMedica International staff writers
Posted on 13 May 2019
Print article
Image: Brain imaging studies have revealed differences in the volume of various brain regions between patients with bipolar disorder and healthy control subjects (Photo courtesy of Wikimedia Commons).
Image: Brain imaging studies have revealed differences in the volume of various brain regions between patients with bipolar disorder and healthy control subjects (Photo courtesy of Wikimedia Commons).
Results obtained by a large genome-wide association study performed on individuals with bipolar disorder identified 20 new genetic associations involving genes encoding ion channels, neurotransmitter transporters, and synaptic components.

Bipolar disorder, previously known as manic depression, is a mental disorder affecting approximately 60 million people worldwide that causes periods of depression and periods of abnormally elevated mood. The risk of suicide among those with the illness is high at greater than 6% over 20 years, while self-harm occurs in 30-40%. The causes of the disorder are not clearly understood, but both environmental and genetic factors play a role. Many genes of small effect contribute to risk. Environmental risk factors include a history of childhood abuse and long-term stress.

The condition is classified as bipolar I disorder if there has been at least one manic episode, with or without depressive episodes, and as bipolar II disorder if there has been at least one hypomanic episode (but no manic episodes) and one major depressive episode. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder.

To identify genes associated with bipolar disorder, investigators at the Mount Sinai School of Medicine (New York, NY, USA) and at more than 200 collaborating institutions performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 gene loci in an additional 9,412 cases and 137,760 controls.

Analysis of the results revealed 30 loci that were significant genome-wide, including 20 newly identified loci. The significant loci contained genes encoding ion channels, neurotransmitter transporters, and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including those regulating of insulin secretion and endocannabinoid signaling. Eight of the genes linked to bipolar disorder harbored schizophrenia associations as well.

"The crux of this international collaborative study was, in essence, to connect the dots," said first author Dr. Eli Stahl, assistant professor of genetics and psychiatry at Mount Sinai School of Medicine. "By discovering new genes associated with bipolar disorder and demonstrating their overlap with genes found in other psychiatric disorders, we bring ourselves closer to finding the true genetic underpinnings of the disease and improving patient outcomes."

The bipolar disorder GWAS paper was published in the May 1, 2019, online edition of the journal of Nature Genetics.

Related Links:
Mount Sinai School of Medicine

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Protein ‘signatures’ obtained via a blood sample can be used to predict the onset of 67 diseases (Photo courtesy of Queen Mary University of London)

Protein Signatures in Blood Can Predict Risk of Developing More Than 60 Diseases

Measuring specific proteins to diagnose conditions like heart attacks, where troponin is tested, is a well-established clinical practice. Now, new research highlights the broader potential of protein measurements... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Microbiology

view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more

Pathology

view channel
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.