We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Hydrogel Cultivation Generates Large Populations of Activated T-Cells

By LabMedica International staff writers
Posted on 30 Apr 2019
Print article
Image: T-cells interacting with the transparent gel (Photo courtesy of Hawley Pruitt, Johns Hopkins University).
Image: T-cells interacting with the transparent gel (Photo courtesy of Hawley Pruitt, Johns Hopkins University).
A novel hydrogel-based culture system was used to generate activated immune T-cells that were shown to be able to block growth of melanoma tumors in a mouse model.

Current T-cell therapies require the removal and culture of the cells in order to expand their number by several thousand‐fold. However, these cells often lose the phenotype and cytotoxic functionality for mediating effective therapeutic responses. While the extracellular matrix (ECM) has been used to preserve and augment cell phenotype, it has not been applied to cellular immunotherapies.

Investigators at Johns Hopkins University (Baltimore, MD, USA) extended research into the potential use of ECM by producing a hyaluronic acid (HA)‐based hydrogel that was engineered to present the two stimulatory signals required for T‐cell activation. They called this gel an "artificial T‐cell stimulating matrix (aTM)". The investigators created and tested a range of hydrogels with different tactile properties, from very soft - like a single cell - to hard gels resembling the state within a cell-packed lymph node.

Results published in the April 10, 2019, online edition of the journal Advanced Materials revealed that the combination of the ECM environment and mechanically sensitive T-cell receptor signaling from the aTM resulted in a rapid and robust expansion of rare, antigen‐specific CD8+ T-cells. T-cells cultivated onto a soft hydrogel multiplied from just a few cells to about 150,000 cells within seven days. By contrast, conventional methods to stimulate and expand T-cells were able to generate only about 20,000 cells within the same time period. In addition, more than 80% of T-cells implanted onto the soft surface multiplied themselves, compared with none of the T-cells implanted on the firmest type of hydrogel.

In a mouse melanoma model system, tumors in animals treated with T-cells cultured on hydrogels remained stable in size, and some of the mice survived beyond 40 days. By contrast, tumors in mice injected with T-cells cultured in plastic dishes grew, and none of these mice lived beyond 30 days.

"One of the surprising findings was that T-cells prefer a very soft environment, similar to interactions with individual cells, as opposed to a densely packed tissue," said senior author Dr. Jonathan Schneck, professor of pathology, medicine, and oncology at Johns Hopkins University. "As we perfect the hydrogel and replicate the essential feature of the natural environment, including chemical growth factors that attract cancer-fighting T-cells and other signals, we will ultimately be able to design artificial lymph nodes for regenerative immunology-based therapy."

Related Links:
Johns Hopkins University

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Automated Nucleic Acid Extraction Instrument
EX9600
New
Control Material
Blood Culture Identification Control Panel

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The LIAISON PLEX Gram-Negative Blood Culture Assay runs on the on the LIAISON PLEX instrument (Photo courtesy of Diasorin)

Molecular Multiplexing Panel for Blood Culture Identification Enables Targeted Treatment Decisions

Each year, approximately 250,000 patients in the US are diagnosed with bloodstream infections (BSIs). Sepsis resulting from BSIs has an average mortality rate of 16-40%, and any delays in initiating appropriate... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.