We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Modified Nanoparticle Drug Carriers Target Solid Tumors in Model

By LabMedica International staff writers
Posted on 27 Nov 2018
Cancer researchers used novel targeted nanoparticles to transport drugs to solid tumors when the absence of a persistent EPR (enhanced permeability and retention) effect, acted as an access barrier negatively affected the effectiveness of drug delivery.

The EPR effect is a controversial concept by which molecules of certain sizes (typically liposomes, nanoparticles, and macromolecular drugs) tend to accumulate in tumor tissue much more than they do in normal tissues. More...
The general explanation that is given for this phenomenon is that, in order for tumor cells to grow quickly, they must stimulate the production of blood vessels. Tumor cell aggregates as small as 150–200 micrometers, start to become dependent on blood supply carried out by newly formed blood vessels for their nutritional and oxygen supply. These newly formed tumor vessels are usually abnormal in form and architecture. Furthermore, tumor tissues usually lack effective lymphatic drainage. All of these factors lead to abnormal molecular and fluid transport dynamics, especially for macromolecular drugs. This phenomenon is referred to as the "enhanced permeability and retention (EPR) effect" of macromolecules and lipids in solid tumors.

Investigators at Purdue University (West Lafayette, IN, USA) looked at the situation in which the absence of a persistent EPR effect functioned as an access barrier to tumors and negatively affected the effectiveness of nanoparticle (NP) drug carriers.

They reported in the November 9, 2018, online edition of the journal Small that when NPs were modified with a quinic acid (QA) derivative, they acted as synthetic mimics of selectin ligands. Selectins are a family of cellular adhesion molecules involved in constitutive lymphocyte homing, and in chronic and acute inflammation processes, including post-ischemic inflammation in muscle, kidney and heart, skin inflammation, atherosclerosis, glomerulonephritis, lupus erythematosus, and cancer metastasis.

The investigators found that QA‐decorated NPs (QA‐NP) interacted with human umbilical vein endothelial cells expressing E‐/P‐selectins and induced a transient increase in endothelial permeability to translocate across the layer. QA‐NP reached selectin‐upregulated tumors, achieving greater tumor accumulation and paclitaxel (PTX) delivery than polyethylene glycol‐decorated NPs (PEG‐NP).

Repeated dosing of PTX‐loaded QA‐NP for two weeks resulted in complete tumor remission in 40–60% of MDA‐MB‐231 tumor‐bearing mice, while those receiving control treatments died from the tumors.

"Chemotherapy can be almost unbearable for most patients and we want to change that. Our method better targets tumors so lower dosages are required and the drugs do less damage to normal tissues," said senior author Dr. Yoon Yeo, professor of industrial and physical pharmacy at Purdue University. "The traditional approach is similar to a delivery driver trying to drop off a package to a certain person without knowing their specific address. Our new approach provides directions to find the specific address to deliver the chemotherapeutic drugs."

Related Links:
Purdue University


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
Laboratory Software
ArtelWare
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.