We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Linked Antibodies Provide Universal Protection from Influenza Infection

By LabMedica International staff writers
Posted on 22 Nov 2018
A potential universal vaccine that would protect individuals from infection by all strains of influenza virus is based on multidomain antibodies that were fabricated by combining selected llama single-domain antibodies.

Vaccines remain essential for influenza prevention, but their efficacy is substantially reduced in the elderly, who are at increased risk of influenza-related complications. More...
Annual selection of vaccine strains presents many challenges, and a poor match with circulating viruses can result in limited effectiveness. Moreover, most vaccine-induced antibodies are directed against the highly variable head region of hemagglutinin (HA) and are strain specific.

In addition to the normal antibodies found in other mammals, llamas produce a unique type of antibodies, which lack the light chain. These so-called heavy-chain antibodies, which have been shown to be just as specific as regular antibodies, are being used to develop single-domain antibodies with potential pharmaceutical applications. In this regard, investigators at the Scripps Research Institute (La Jolla, CA, USA) and their collaborators extended the potential usefulness of these antibodies by combining several into a single molecule – a multidomain antibody.

For this study two llama antibodies against influenza A and two against influenza B were linked to create a multidomain antibody. The investigators reported in the November 2, 2018, issue of the journal Science that multidomain antibody MD3606 protected mice against influenza A and B infection when administered by nasal inhalation or when it was expressed from an engineered gene administered via a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses revealed binding to highly conserved epitopes.

The investigators concluded that they had devised an alternative strategy for long-lasting protection in which single-domain antibodies with influenza A or B reactivity were linked together into a multidomain antibody and expressed at the nasopharyngeal mucosa through the intranasal administration of a recombinant adeno-associated virus (AAV) vector encoding the multidomain antibody transgene.

Related Links:
Scripps Research Institute


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Insights into sarcomatoid renal cell carcinoma point to broader use of common immunotherapies (Photo courtesy of Salgia NJ et al., Cancer Cell, 2025)

Novel Gene Signature Predicts Immunotherapy Response in Advanced Kidney Cancers

Sarcomatoid renal cell carcinoma (sRCC) is a rare, aggressive form of kidney cancer comprising about 5% of cases and is typically diagnosed at late stages. Resistant to most therapies, it has shown unusually... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.