We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanospear Technology Developed for Directed Gene Therapy

By LabMedica International staff writers
Posted on 29 Mar 2018
A novel delivery system for macromolecular compounds such as genes depends on nanoscale splinter-like structures that have been termed "nanopsears."

Currently, gene therapy relies on modified viruses, external electrical fields, or harsh chemicals to penetrate cell membranes and deliver genes to target cells. More...
Each of these methods has its own shortcomings; it can be costly, inefficient, or cause undesirable stress and toxicity to cells.

In an effort to circumvent these shortcomings, investigators at the University of California, Los Angeles (USA) developed an efficient nonviral platform for high-throughput and subcellular precision-targeted intracellular delivery of nucleic acids in cell culture based on magnetic nanospears. The biodegradable nanospears were composed of silicon, nickel, and gold. They could be mass-produced inexpensively and efficiently, and, due to their size, could deliver genetic information with minimal impact on cell viability and metabolism.

A magnet was used to direct the mechanical motion of a single nanospear, enabling precise control of position and three-dimensional rotation. The nanospears were further functionalized with enhanced green fluorescent protein (eGFP)-expression plasmids via a layer-by-layer approach before release from the underlying silicon substrate. Plasmid functionalized nanospears were guided magnetically to approach target adherent U87 glioblastoma cells, penetrating the cell membrane to enable intracellular delivery of the plasmid cargo.

Results published in the March 14, 2018, online edition of the journal ACS Nano revealed that after 24 hours, the target cell expressed green fluorescence indicating successful transfection. Nanospear-mediated transfection was readily scalable for the simultaneous manipulation of multiple cells using a rotating magnet. Cell viability was greater than 90% and transfection rates exceeding 80% were achieved, which outperformed conventional nonviral intracellular methods.

"We knew how to make nanostructures of different shapes in massive numbers using simple fabrication strategies," said senior author Dr. Paul Weiss, professor of chemistry, biochemistry, materials science, and engineering at the University of California, Los Angeles. "Once we had that in hand, we realized we could make precise structures that would be of value in gene therapies. One of the amazing things about working at UCLA is that for each of the targeted diseases, we collaborate with leading clinicians who already have gene therapies in development. They have the gene-editing cargo, model cells, animal models, and patient cells in place so we are able to optimize our nanosystems on methods that are on the pathway to the clinic."

Related Links:
University of California, Los Angeles


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.