We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanospear Technology Developed for Directed Gene Therapy

By LabMedica International staff writers
Posted on 29 Mar 2018
A novel delivery system for macromolecular compounds such as genes depends on nanoscale splinter-like structures that have been termed "nanopsears."

Currently, gene therapy relies on modified viruses, external electrical fields, or harsh chemicals to penetrate cell membranes and deliver genes to target cells. More...
Each of these methods has its own shortcomings; it can be costly, inefficient, or cause undesirable stress and toxicity to cells.

In an effort to circumvent these shortcomings, investigators at the University of California, Los Angeles (USA) developed an efficient nonviral platform for high-throughput and subcellular precision-targeted intracellular delivery of nucleic acids in cell culture based on magnetic nanospears. The biodegradable nanospears were composed of silicon, nickel, and gold. They could be mass-produced inexpensively and efficiently, and, due to their size, could deliver genetic information with minimal impact on cell viability and metabolism.

A magnet was used to direct the mechanical motion of a single nanospear, enabling precise control of position and three-dimensional rotation. The nanospears were further functionalized with enhanced green fluorescent protein (eGFP)-expression plasmids via a layer-by-layer approach before release from the underlying silicon substrate. Plasmid functionalized nanospears were guided magnetically to approach target adherent U87 glioblastoma cells, penetrating the cell membrane to enable intracellular delivery of the plasmid cargo.

Results published in the March 14, 2018, online edition of the journal ACS Nano revealed that after 24 hours, the target cell expressed green fluorescence indicating successful transfection. Nanospear-mediated transfection was readily scalable for the simultaneous manipulation of multiple cells using a rotating magnet. Cell viability was greater than 90% and transfection rates exceeding 80% were achieved, which outperformed conventional nonviral intracellular methods.

"We knew how to make nanostructures of different shapes in massive numbers using simple fabrication strategies," said senior author Dr. Paul Weiss, professor of chemistry, biochemistry, materials science, and engineering at the University of California, Los Angeles. "Once we had that in hand, we realized we could make precise structures that would be of value in gene therapies. One of the amazing things about working at UCLA is that for each of the targeted diseases, we collaborate with leading clinicians who already have gene therapies in development. They have the gene-editing cargo, model cells, animal models, and patient cells in place so we are able to optimize our nanosystems on methods that are on the pathway to the clinic."

Related Links:
University of California, Los Angeles


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researchers identified SARS-CoV-2 protein fragments within extracellular vesicles in the blood of long COVID patients (Photo courtesy of Shutterstock)

Blood Biomarker Test Could Confirm Long COVID Diagnosis

Long COVID remains a diagnostic challenge, with clinicians currently relying on a collection of symptoms that appear 12 weeks or more after SARS-CoV-2 infection. No blood tests or biomarkers currently... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Insights into sarcomatoid renal cell carcinoma point to broader use of common immunotherapies (Photo courtesy of Salgia NJ et al., Cancer Cell, 2025)

Novel Gene Signature Predicts Immunotherapy Response in Advanced Kidney Cancers

Sarcomatoid renal cell carcinoma (sRCC) is a rare, aggressive form of kidney cancer comprising about 5% of cases and is typically diagnosed at late stages. Resistant to most therapies, it has shown unusually... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.