We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Drug Developers Ponder Use of Highly Concentrated Protein Nanoparticles

By LabMedica International staff writers
Posted on 13 Feb 2012
Drug developers have shown that nanoparticles comprised of extremely high concentrations of protein molecules maintain the stability and metabolic function of the proteins until they are injected or diluted.

Investigators at the University of Texas (Austin, USA) have been experimenting with protein nanoparticles for the last several years. More...
In the current study, which was published in the January 19, 2012, online edition of the journal ACS Nano, they created highly concentrated antibody dispersions (up to 260 mg/mL) comprising dense equilibrium nanoclusters of protein (monoclonal antibody 1B7, polyclonal sheep immunoglobulin G, and bovine serum albumin) molecules. The nanoclusters were formed by lowering the pH of the protein solution and adding the sugar trehalose as a co-solute, which strengthened the short-ranged attraction between protein molecules.

The extremely concentrated environment within the nanoclusters (700 mg/mL) provided conformational stability to the protein through a novel self-crowding mechanism, as shown by computer simulation, while the primarily repulsive nanocluster interactions resulted in colloidally stable, transparent dispersions.

Upon dilution of the dispersions in vitro, the clusters rapidly dissociated into fully active protein monomers as was shown by biophysical analysis and sensitive biological assays. In vivo subcutaneous injection into mice resulted in pharmacokinetics indistinguishable from that of a standard antibody solution.

“This general physical concept for forming highly concentrated, yet stable, protein dispersions is a major new direction in protein science,” said first author Dr. Keith P. Johnston, professor of chemical engineering at the University of Texas. “We believe this discovery of a new highly concentrated form of proteins – clusters of individual protein molecules – is a disruptive innovation that could transform how we fight diseases. It required integration of challenging contributions in fundamental science and engineering from three of our chemical engineering research groups.”

Related Links:

University of Texas



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.