Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




“Label-Free” Imaging Approach Monitors Nanotubes in Cells, Blood for Biomedical Research

By LabMedica International staff writers
Posted on 21 Dec 2011
Researchers have developed a new imaging tool for tracking carbon nanotubes in living cells and in the bloodstream, which could help efforts to advance their use in biomedical research and clinical medicine. More...


The structures have potential applications in drug delivery to treat diseases and imaging for cancer research. Two types of nanotubes are created in the manufacturing process, metallic and semiconducting. Until now, however, there has been no technique to see both types in living cells and the bloodstream, according to Dr. Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University (West Lafayette, IN, USA) .

The imaging technique, called transient absorption, employs a pulsing near-infrared laser to deposit energy into the nanotubes, which then are probed by a second near-infrared laser. The researchers have overcome major hurdles in using the imaging technology, detecting, and monitoring the nanotubes in live cells and laboratory mice, Dr. Cheng reported. “Because we can do this at high speed, we can see what’s happening in real time as the nanotubes are circulating in the bloodstream,” he said.

Findings were described online in a research article December 4, 2011, in the journal Nature Nanotechnology. The imaging technique is “label-free,” meaning it does not require that the nanotubes be marked with dyes, making it potentially useful for research and medicine, according to Dr. Cheng. “It’s a fundamental tool for research that will provide information for the scientific community to learn how to perfect the use of nanotubes for biomedical and clinical applications,” he said.

The traditional imaging technique utilizes luminescence, which is limited because it detects the semiconducting nanotubes but not the metallic ones. One hurdle in using the transient absorption imaging system for living cells was to remove the interference caused by the background glow of red blood cells, which is brighter than the nanotubes.

The researchers resolved this problem by separating the signals from red blood cells and nanotubes in two separate “channels.” Light from the red blood cells is somewhat delayed compared to light emitted by the nanotubes. The two kinds of signals are “phase separated” by restricting them to different channels based on this delay.

Researchers utilized the technique to see nanotubes circulating in the blood vessels of mice earlobes. “This is important for drug delivery because you want to know how long nanotubes remain in blood vessels after they are injected,” Dr. Cheng said. “So you need to visualize them in real time circulating in the bloodstream.”

The structures, called single-wall carbon nanotubes, are formed by rolling up a one-atom-thick layer of graphite called graphene. The nanotubes are intrinsically hydrophobic; therefore, some of the nanotubes used in the research were coated with DNA to make them water-soluble, which is required for them to be transported in the bloodstream and into cells.

The researchers also have captured images of nanotubes in the liver and other organs to examine their distribution in mice, and they are using the imaging technique to study other nanomaterials such as graphene.

Related Links:

Purdue University




New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Drug Test Kit
DrugCheck 3000
New
Automatic Hematology Analyzer
LABAS F9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.