We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App





Unique Testing Method as Sensitive as PCR, But Faster Than LFT

By LabMedica International staff writers
Posted on 08 Aug 2022
Print article
Image: The new testing method enables detection at low viral levels (Photo courtesy of Unsplash)
Image: The new testing method enables detection at low viral levels (Photo courtesy of Unsplash)

A unique testing method is just as sensitive as both PCR and LAMP tests - currently used in hospital settings - and is also faster and more sensitive than lateral flow tests, enabling detection at low viral levels. Known as Reverse Transcription-Free EXPAR (RTF-EXPAR) testing, this new technology offers detection in as little as 10 minutes.

The testing method invented at the University of Birmingham (Birmingham, UK) is set for a global rollout after its commercial rights were exclusively licensed to the world’s largest COVID-19 test provider, Innova Medical Group, Inc. (Pasadena, CA, USA). The speed of the test is based, in part, on its avoidance of slower, reverse transcriptase-based technologies, and provides the ease of use and speed of lateral flow tests with the sensitivity of PCR testing. Detailed test evaluations reveal the method delivers a fast, accurate, highly sensitive and simple test for COVID-19, meaning the test could be deployed at entertainment venues, airport arrival terminals, and in remote settings where clinical testing laboratories are not available.

The method can be used with testing techniques which bypass the need for laboratory equipment, and this is expected to reduce delays in waiting for test results, which currently require samples to be sent to specialist laboratories. The assay was invented and tested at the University of Birmingham, which found its sensitivity to be equivalent to quantitative PCR testing. The new RTF-EXPAR testing platform is also being adapted for the detection of other viruses, meaning the tests can be quickly adapted to cover both new variants and new viruses. The technology’s new license holder, Innova, is aiming to accelerate RTF-EXPAR’s global rollout for widespread use by 2023.

“The RFT test rapidly amplifies small quantities of viral genetic material, producing a detectable signal within 10 minutes, much faster than PCR or LAMP testing, and even quicker than lateral flow tests,” explained Professor Tim Dafforn from the University of Birmingham. “The reverse transcription and amplification steps slow down existing COVID assays like LAMP and PCR, which are based on nucleic acid detection. An ideal test would have the ‘best of both worlds’ - both sufficiently sensitive and speedy.”

“The new RTF test achieves that goal in two ways. Firstly, the assay team designed a new RNA-to-DNA conversion step that avoids reverse transcription and secondly, the amplification step to generate the read-out signal uses EXPAR, an alternative DNA amplification process,” added Professor Dafforn.

“EXPAR amplifies DNA at a single temperature, thus avoiding lengthy heating and cooling steps found in PCR,” said Professor James Tucker from the University of Birmingham. “However, while LAMP also uses a single temperature for amplification, EXPAR is a simpler and a more direct process, in which much smaller strands are amplified. This makes EXPAR an even faster DNA amplification technique than not only PCR but also LAMP.”

“The RTF technology developed at the University of Birmingham hits a testing sweet spot. It’s just as sensitive as PCR and LAMP tests, but without the time constraints and laboratory equipment required for these methods,” said Robert Kasprzak, Chief Executive Officer at Innova.

Related Links:
University of Birmingham 
Innova Medical Group, Inc. 

Gold Supplier
SARS-CoV-2 (ORF1a, N, RdRp) Real-Time RT-PCR Test
DiaPlexQ SARS-CoV-2 (ORF1a, N, RdRp)
New
Zika Virus IgM µ-Capture ELISA
https://www.ibl-international.com/en/zika-virus-igm-capture-elisa
New
5-Diff Auto Hematology Analyzer
iCell-8800
New
Blood Volume Analyzer
BVA-100

Print article
IIR Middle East

Channels

Molecular Diagnostics

view channel
Image: The PancreaSeq genetic test for pancreatic cancer outperforms current guidelines (Photo courtesy of Pexels)

Molecular Test Accurately Classifies Pancreatic Cysts as Potentially Cancerous or Benign

Pancreatic cysts - small pockets of fluid in the pancreas - can be broadly categorized as non-mucinous, which are benign, and mucinous, which have the potential to give rise to pancreatic cancer.... Read more

Hematology

view channel
Image: The newly-launched solutions support OGT’s growing NGS portfolio (Photo courtesy of OGT)

New NGS Solutions Provide Powerful Tool for Myeloid Research with Highly Efficient Workflow

OGT (Oxford, UK), a Sysmex Group (Kobe, Japan) company, has launched several new solutions to support its growing next-generation sequencing (NGS) portfolio. These include the SureSeq Myeloid Plus panel,... Read more

Technology

view channel
Image: The MasSpec Pen, a handheld mass spectrometry-based device, enables rapid analysis of biological samples, including clinically relevant bacteria (Photo courtesy of Vivian Abagiu/University of Texas)

Handheld Mass Spectrometry Probe Identifies Clinically Relevant Bacteria

Rapid identification of bacteria is critical to prevent antimicrobial resistance and ensure positive patient outcomes. Identifying bacteria while a patient is still in surgery could allow doctors to more... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.