Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Unique Testing Method as Sensitive as PCR, But Faster Than LFT

By LabMedica International staff writers
Posted on 08 Aug 2022

A unique testing method is just as sensitive as both PCR and LAMP tests - currently used in hospital settings - and is also faster and more sensitive than lateral flow tests, enabling detection at low viral levels. More...

Known as Reverse Transcription-Free EXPAR (RTF-EXPAR) testing, this new technology offers detection in as little as 10 minutes.

The testing method invented at the University of Birmingham (Birmingham, UK) is set for a global rollout after its commercial rights were exclusively licensed to the world’s largest COVID-19 test provider, Innova Medical Group, Inc. (Pasadena, CA, USA). The speed of the test is based, in part, on its avoidance of slower, reverse transcriptase-based technologies, and provides the ease of use and speed of lateral flow tests with the sensitivity of PCR testing. Detailed test evaluations reveal the method delivers a fast, accurate, highly sensitive and simple test for COVID-19, meaning the test could be deployed at entertainment venues, airport arrival terminals, and in remote settings where clinical testing laboratories are not available.

The method can be used with testing techniques which bypass the need for laboratory equipment, and this is expected to reduce delays in waiting for test results, which currently require samples to be sent to specialist laboratories. The assay was invented and tested at the University of Birmingham, which found its sensitivity to be equivalent to quantitative PCR testing. The new RTF-EXPAR testing platform is also being adapted for the detection of other viruses, meaning the tests can be quickly adapted to cover both new variants and new viruses. The technology’s new license holder, Innova, is aiming to accelerate RTF-EXPAR’s global rollout for widespread use by 2023.

“The RFT test rapidly amplifies small quantities of viral genetic material, producing a detectable signal within 10 minutes, much faster than PCR or LAMP testing, and even quicker than lateral flow tests,” explained Professor Tim Dafforn from the University of Birmingham. “The reverse transcription and amplification steps slow down existing COVID assays like LAMP and PCR, which are based on nucleic acid detection. An ideal test would have the ‘best of both worlds’ - both sufficiently sensitive and speedy.”

“The new RTF test achieves that goal in two ways. Firstly, the assay team designed a new RNA-to-DNA conversion step that avoids reverse transcription and secondly, the amplification step to generate the read-out signal uses EXPAR, an alternative DNA amplification process,” added Professor Dafforn.

“EXPAR amplifies DNA at a single temperature, thus avoiding lengthy heating and cooling steps found in PCR,” said Professor James Tucker from the University of Birmingham. “However, while LAMP also uses a single temperature for amplification, EXPAR is a simpler and a more direct process, in which much smaller strands are amplified. This makes EXPAR an even faster DNA amplification technique than not only PCR but also LAMP.”

“The RTF technology developed at the University of Birmingham hits a testing sweet spot. It’s just as sensitive as PCR and LAMP tests, but without the time constraints and laboratory equipment required for these methods,” said Robert Kasprzak, Chief Executive Officer at Innova.

Related Links:
University of Birmingham 
Innova Medical Group, Inc. 


Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.