We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors

By LabMedica International staff writers
Posted on 29 Nov 2022
Print article
Image: The multiplex chip can measure the viral load in a nasal swab (Photo courtesy of University of Freiburg)
Image: The multiplex chip can measure the viral load in a nasal swab (Photo courtesy of University of Freiburg)

CRISPR-Cas is versatile: Besides the controversial genetically modified organisms (GMOs), created through gene editing, various new scientific studies use different orthologues of the effector protein ‘Cas’ to detect nucleic acids such as DNA or RNA. Now, a group of researchers has introduced a microfluidic multiplexed chip for the simultaneous measurement of the viral load in nasal swabs and (if applicable) the blood antibiotic levels of COVID-19 patients. The biosensor for the nucleic acid amplification-free detection of SARS-CoV-2 RNA was developed by researchers at University of Freiburg (Baden-Württemberg, Germany).

The market launch of rapid antigen test kits has significantly changed the way in which society handles the effects of the pandemic: Individuals suspecting an infection with SARS-CoV-2 can now test themselves at home with kits that are readily available at most drug stores, pharmacies and supermarkets, instead of making an, oftentimes difficult to acquire, appointment for PCR testing, that requires one to three additional days to receive the result. This convenience is, however, paid for with test sensitivity. This issue became flagrantly apparent during the wave of infections last winter, when the ‘lateral flow devices’ frequently failed to detect infections with the Omicron-variant until after the onset of symptoms.

One alternative is a CRISPR-powered COVID-19 test. Similar to the rapid tests performed at home or in testing centers, a nasal or oral swab sample solution is added to a reaction mix. In contrast to these viral antigen tests, however, CRISPR, like rt-qPCR, screens the patient sample for RNA sequences characteristic to SARS-CoV-2. If the sample contains the RNA snippet of interest, the effector protein (Cas13a) is activated and cleaves the reporter RNA provided within the reaction mix. The absence of intact reporter creates an inversely proportional relation to the abundance of viral RNA within the sample, that is then analyzed in an electrochemical readout (low current densities indicate a high viral load).

In light of recent decisions of several federal states to discontinue isolation requirements for individuals tested positive for COVID-19 reliable, sensitive and rapid testing opportunities will again gain significance within the task of adequately managing recurring waves of infections. The latter will also inevitably coincide with the hospitalization of patients with severe symptoms and disease progressions. This is where another feature of the microfluidic chip comes into play: the combination of the CRISPR-assays with a ß-lactam antibiotic detection. COVID-19 patients often acquire bacterial co-infections that are then treated with broad-spectrum antibiotics like amoxicillin, ampicillin or piperacillin. Finding and maintaining the correct and personalized dosage is hereby crucial in guaranteeing a successful treatment as well as in reducing the emergence of resistant strains. The proposed sensor could facilitate dealing with these issues, through simultaneous monitoring of the viral load and blood antibiotic levels.

“The trade-off between sensitivity and sample-to-result time could potentially be bridged using our method,” said Midori Johnston, first author of the study.

“Our system herein omits nucleic acid amplification and is flexibly adaptable to new, clinically relevant mutations of the virus while exclusively employing inexpensive, shelf stable and non-toxic reagents as well as a portable measurement setup,” explained microsystems engineer Dr. Can Dincer of the Department of Microsystems Engineering, University of Freiburg who headed the research group.

Related Links:
University of Freiburg

Gold Member
COVID-19 Rapid Test
AQ+ COVID-19 Ag Rapid Test
Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
New
Vaginal pH Screening Kit
Vaginal pH Screening Kit
New
Chikungunya Rapid Test
Chikungunya IgG/IgM Rapid Test Kit

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.