We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

MACHEREY-NAGEL

MACHEREY-NAGEL manufactures pH papers, medical diagnostic test strips, and other such related paper products for rapi... read more Featured Products: More products

Download Mobile App





Gut Microbiome Dysbiosis Linked to COVID-19

By LabMedica International staff writers
Posted on 07 Nov 2022

Previous reports have demonstrated that severe COVID-19 is frequently associated with specific inflammatory immune phenotypes, lymphopenia, and a generally disproportionate immune response leading to systemic organ failure. More...

Complex gut microbiota ecosystems can prevent the invasion of potentially pathogenic bacteria. Conversely, when the gut microbiota incurs damage, such as through antibiotics treatment, competitive exclusion of pathogens is weakened and potentially dangerous blooms of antibiotic-resistant bacterial strains can occur.

Medical Microbiologists at the New York University Grossman School of Medicine (New York, NY, USA) and their colleagues demonstrated that SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. They then they analyzed the bacterial composition of stool samples from 96 adults hospitalized with COVID-19 in 2020.

For bacterial DNA extraction 700 µL of SL1 lysis buffer (NucleoSpin Soil kit, Macherey-Nagel, Allentown, PA, USA) was added to the stool samples and tubes were heated at 95 °C for two hours to inactivate SARS-CoV-2. DNA concentration was assessed using a NanoDrop spectrophotometer. Human samples were prepared using KAPA HiFi Polymerase to amplify the V4 region of the 16 S rRNA gene. Libraries were sequenced on a MiSeq (Illumina, San Diego, CA, USA) using paired-end 2 × 250 reads and the MiSeq Reagent Kitv2.

The investigators observed an increase in populations of several microbes known to include antibiotic-resistant species. An analysis of stool samples paired with blood cultures found that antibiotic-resistant bacteria in the gut migrated to the bloodstream in 20% of patients. This migration could be due to a combination of the immune-compromising effects of the viral infection and the antibiotic-driven depletion of commensal gut microbes. The team reported that members of the phyla Firmicutes and Bacteroidetes represented the most abundant bacteria, followed by Proteobacteria.

The authors concluded that their findings support a scenario in which gut-to-blood translocation of microorganisms following microbiome dysbiosis leads to dangerous bloodstream infection during COVID-19, a complication seen in other immunocompromised patients, including patients with cancer, acute respiratory distress syndrome, and in ICU patients receiving probiotics. The study was published November 1, 2022 in the journal Nature Communications.

Related Links:
New York University Grossman School of Medicine 
Macherey-Nagel 
Illumina 


Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
ESR Analyzer
TEST1 2.0
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A simple blood sample that allows DNA methylation could identify epigenetic biomarkers (Photo courtesy of 123RF)

Simple Blood Sample Could Identify Epigenetic Biomarkers to Predict CVD Risk in Type 2 Diabetes

People with type 2 diabetes face up to four times higher risk of cardiovascular events such as heart attacks, strokes, and angina compared to individuals without the condition. Yet, current tools used... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The new technology could predict who will benefit from immunotherapy (Photo courtesy of Max Delbrück Center)

New Technology Deciphers Immune Cell Communication to Predict Immunotherapy Response

A healthy immune system depends on complex communication between specialized cell types that detect, alert, and eliminate harmful threats. When these immune signaling pathways break down, the result can... Read more

Microbiology

view channel
Image: MycoMEIA Aspergillus Assay is the first FDA-cleared urine-based test for invasive aspergillosis (Photo courtesy of Pearl Diagnostics)

Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People

Invasive Aspergillosis (IA), a life-threatening fungal infection, poses a serious threat to immunocompromised individuals, especially those with hematologic malignancies, transplants, or severe lung diseases.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.