We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App





AI Takes Guesswork Out Of Lateral Flow Testing

By LabMedica International staff writers
Posted on 19 Oct 2022
Print article
Image: Researchers show that machine learning-based apps could be beneficial for diagnostic testing at home (Photo courtesy of Pexels)
Image: Researchers show that machine learning-based apps could be beneficial for diagnostic testing at home (Photo courtesy of Pexels)

An artificial intelligence (AI) app to read COVID-19 lateral flow tests helped to reduce false results in a new trial.

A team of researchers from the University of Birmingham (Birmingham, UK), Durham University (Durham, UK) and Oxford University (Oxford, UK) tested whether a machine learning algorithm could improve the accuracy of results from antigen lateral flow devices for COVID-19. The LFD AI Consortium team worked at UK Health Security Agency assisted test centres and with health care workers conducting self-testing to trial the AI app. More than 100,000 images were submitted as part of the study, and the team found that the algorithm was able to increase the sensitivity of results, determining between a true positive and false negative, from 92% to 97.6% accuracy.

“The widespread use of antigen lateral flow devices was a significant moment not just during the pandemic, but has also introduced diagnostic testing to many more people in society. One of the drawbacks with LFD testing for COVID, pregnancy and any other future use is the ‘faint line’ question – where we can’t quite tell if it’s a positive or not,” said Professor Andrew Beggs, Professor of Cancer Genetics & Surgery at the University of Birmingham and lead author of the study. “The study looked at the feasibility of using machine learning to take the guesswork out of the faint line tests, and we’re pleased to see that the app saw an increase in sensitivity of the tests, reducing the numbers of false negatives. The promise of this type of technology could be used in lots of applications, both to reduce uncertainty about test results and provide a crucial support for visually impaired people.”

“The increase in sensitivity and overall accuracy is significant and it shows the potential of this app by reducing the number of false negatives and future infections. Crucially, the method can also be easily adapted to the evaluation of other digital readers for lateral flow type devices,” added Professor Camila Caiado, Professor of Statistics at Durham University and chief statistician on the project.

Related Links:
University of Birmingham
Durham University
Oxford University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.