We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nucleic Acid Therapy Effective in Inflammatory Bowel Disease Model

By LabMedica International staff writers
Posted on 06 Sep 2018
Print article
Image: The role of miRNAs in inflammatory bowel disease (IBD): miR-29 loaded on a supercarbonate apatite prevented the development of inflammation by suppressing the production of inflammatory cytokines (IL-6, TGF-beta, and IL-23) secreted from dendritic cells and by suppressing the differentiation of naive T-cells to Th17 cells (Photo courtesy of Osaka University).
Image: The role of miRNAs in inflammatory bowel disease (IBD): miR-29 loaded on a supercarbonate apatite prevented the development of inflammation by suppressing the production of inflammatory cytokines (IL-6, TGF-beta, and IL-23) secreted from dendritic cells and by suppressing the differentiation of naive T-cells to Th17 cells (Photo courtesy of Osaka University).
A team of Japanese researchers working with a mouse model recently described a novel method for using microRNAs to treat inflammatory bowel disease (IBD).

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

Several miRNAs had been shown earlier to suppress the production of inflammatory cytokines such as TNF-alpha and interleukin-6 (IL6) that cause symptoms of IBD. However, there has not been an efficient method available for delivering miRNAs to the affected area.

Investigators at Osaka University (Japan) had been using a mouse model system to search for a means of delivering targeted doses of therapeutic miRNAs to the inflamed gut region. In this regard, they described the use of microRNA-29 (miR-29) and a supercarbonate apatite (sCA) nanoparticle as a drug delivery system in the September 7, 2018, issue of the journal Molecular Therapy-Nucleic Acids.

The investigators reported that injection of sCA-miR-29a-3p or sCA-miR-29b-3p into mouse tail veins markedly prevented inflammation caused by dextran sulfate sodium (DSS)-induced colitis. RNA sequencing analysis revealed that miR-29a and miR-29b could inhibit the interferon-associated inflammatory cascade. Subcutaneous injection of sCA-miR-29b also potently inhibited inflammation, and it efficiently targeted CD11c+ dendritic cells (DCs) among various types of immune cells in the inflamed mucosa. RT-PCR analysis indicated that the miR-29 RNAs in CD11c+ DCs suppressed the production of interleukin-6 (IL-6), transforming growth factor beta (TGF-beta), and IL-23 subunits in DSS-treated mice.

Although only modest amounts of miRNA were delivered to the inflamed colonic mucosa, the sCA-miRNA complex was preferentially captured by CD11c+ tissue dendritic cells in the colon, and this caused a molecular modulation that inhibited maturation toward pathogenic T-cells. This feature of sCA may be particularly useful for efficient therapy of IBD, in which dendritic cells play a central role.

"Our technique to deliver miRNAs to DCs - major players in immune responses - will shape the future of medical care. sCA can be used to treat a wide range of immunity and allergic disorders caused by immune responses. The results of our study will lead to the development of new drugs for treating these disorders," said senior author Dr. Hirofumi Yamamoto, professor of molecular pathology and gastroenterological surgery at Osaka University.

Related Links:
Osaka University

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.