We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mitochondrial DNA Depletion Linked to Depletion Syndromes

By LabMedica International staff writers
Posted on 02 Aug 2018
Physiological deterioration due to depletion of mitochondrial DNA, such as markers of aging like wrinkled skin and hair loss, was shown to be reversed by restoration of normal mitochondrial DNA levels and function.

Mitochondrial DNA (mtDNA) depletion is involved in mtDNA depletion syndromes, mitochondrial diseases, aging and aging-associated chronic diseases and other human pathologies such as cardiovascular disease, diabetes, age-associated neurological disorders and cancer.

To study the involvement of mitochondrial DNA in these processes, investigators at the University of Alabama (Birmingham, USA) created a mouse model with a dominant-negative mutation in the polymerase domain of the POLG1 (DNA polymerase gamma 1, accessory subunit) gene, which induced depletion of mtDNA in various tissues. More...
The mutation in this mouse model was induced by addition of the antibiotic doxycycline to the food or drinking water, which caused depletion of mitochondrial DNA, as the enzyme to replicate mtDNA was inactivated.

The investigators reported in the July 20, 2018, online edition of the journal Cell Death and Disease that these "mtDNA-depleter" mice showed reduced mtDNA content, reduced mitochondrial gene expression, and instability of supercomplexes involved in oxidative phosphorylation (OXPHOS) resulting in reduced OXPHOS enzymatic activities. They demonstrated that ubiquitous depletion of mtDNA in mice led to predominant and profound effects on the skin resulting in wrinkles and visual hair loss with an increased number of dysfunctional hair follicles and inflammatory responses.

Removal of doxycycline from the diet turned off mutant POLG1 transgene expression, which restored mitochondrial function, as well as normalizing the skin and hair, to wild-type levels.

“To our knowledge, this observation is unprecedented,” said senior author Dr. Keshav Singh, professor of genetics at the University of Alabama. “This mouse model should provide an unprecedented opportunity for the development of preventive and therapeutic drug development strategies to augment the mitochondrial functions for the treatment of aging-associated skin and hair pathology and other human diseases in which mitochondrial dysfunction plays a significant role.”

Related Links:
University of Alabama


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.