We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mechanism Regulates Organelle Distribution during Cell Division

By LabMedica International staff writers
Posted on 24 Jul 2018
A team of Swiss cell biologists has discovered how cells maintain the integrity and distribution of cytoplasmic organelles during and following the process of cell division.

Previous research has shown that liquid–liquid phase separation underlies the formation and disassembly of organelles that lack membranes in cells, but the cellular mechanisms that control this phenomenon are poorly understood. More...
A prominent example of regulated and reversible segregation of liquid phases may occur during mitosis, when this type of organelles disappear upon nuclear-envelope breakdown and reappear as mitosis is completed.

To better understand this phenomenon, investigators at the University of Zurich (Switzerland) focused their attention on a specific enzyme, the dual-specificity kinase DYRK3 (Dual specificity tyrosine-phosphorylation-regulated kinase 3). This enzyme acts as a central solubilizing agent for several types of membraneless organelles during mitosis.

The investigators reported in the July 4, 2018, issue of the journal Nature that DYRK3 kinase activity was essential to prevent the unmixing of the mitotic cytoplasm into aberrant liquid-like hybrid organelles and the over-nucleation of spindle bodies. DYRK3 promoted the mixing of the liquid phases within the cytoplasm to ensure correct separation of chromosomes and uniform division of the cell's components. Following cell division, the enzyme was denatured and individual phases were reestablished. Failure of the phase separation mechanism to function correctly could result in incomplete chromosome separation and incorrect distribution to the daughter cells, which is a common characteristic of numerous cancers.

"These fundamental findings give us completely new insights into cell division: as a process in which the cell contents mix together and then separate again," said senior author Dr. Lucas Pelkmans, professor of molecular life sciences at the University of Zurich. "Thanks to the discovery as to which proteins control phase separation, new strategies can be pursued to prevent mistakes in this process."

Related Links:
University of Zurich


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gel Cards
DG Gel Cards
New
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.