We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mechanism Regulates Organelle Distribution during Cell Division

By LabMedica International staff writers
Posted on 24 Jul 2018
Print article
Image: When the enzyme DYRK3 is inhibited, mitotic defects are resulting (red: droplets, green: spindle, blue: DNA) (Photo courtesy of Arpan Rai, University of Zurich).
Image: When the enzyme DYRK3 is inhibited, mitotic defects are resulting (red: droplets, green: spindle, blue: DNA) (Photo courtesy of Arpan Rai, University of Zurich).
A team of Swiss cell biologists has discovered how cells maintain the integrity and distribution of cytoplasmic organelles during and following the process of cell division.

Previous research has shown that liquid–liquid phase separation underlies the formation and disassembly of organelles that lack membranes in cells, but the cellular mechanisms that control this phenomenon are poorly understood. A prominent example of regulated and reversible segregation of liquid phases may occur during mitosis, when this type of organelles disappear upon nuclear-envelope breakdown and reappear as mitosis is completed.

To better understand this phenomenon, investigators at the University of Zurich (Switzerland) focused their attention on a specific enzyme, the dual-specificity kinase DYRK3 (Dual specificity tyrosine-phosphorylation-regulated kinase 3). This enzyme acts as a central solubilizing agent for several types of membraneless organelles during mitosis.

The investigators reported in the July 4, 2018, issue of the journal Nature that DYRK3 kinase activity was essential to prevent the unmixing of the mitotic cytoplasm into aberrant liquid-like hybrid organelles and the over-nucleation of spindle bodies. DYRK3 promoted the mixing of the liquid phases within the cytoplasm to ensure correct separation of chromosomes and uniform division of the cell's components. Following cell division, the enzyme was denatured and individual phases were reestablished. Failure of the phase separation mechanism to function correctly could result in incomplete chromosome separation and incorrect distribution to the daughter cells, which is a common characteristic of numerous cancers.

"These fundamental findings give us completely new insights into cell division: as a process in which the cell contents mix together and then separate again," said senior author Dr. Lucas Pelkmans, professor of molecular life sciences at the University of Zurich. "Thanks to the discovery as to which proteins control phase separation, new strategies can be pursued to prevent mistakes in this process."

Related Links:
University of Zurich

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The utilization of liquid biopsies in cancer research is a rapidly developing field (Photo courtesy of Lightspring/Shutterstock)

Blood Samples Enhance B-Cell Lymphoma Diagnostics and Prognosis

B-cell lymphoma is the predominant form of cancer affecting the lymphatic system, with about 30% of patients with aggressive forms of this disease experiencing relapse. Currently, the disease’s risk assessment... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.