We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Bacterial Inhibitor Blocks Lysozyme Activity in Model

By LabMedica International staff writers
Posted on 18 Jul 2018
A team of molecular microbiologists has identified a mechanism by which certain bacteria – in particular the Gram-negative pathogen Neisseria gonorrhoeae – avoid lysozyme destruction.

Lysozyme, also known as muramidase or N-acetylmuramide glycanhydrolase is an antimicrobial enzyme produced by animals that forms part of the innate immune system. More...
Lysozyme is a glycoside hydrolase that catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan, which is the major component of gram-positive bacterial cell wall. This hydrolysis in turn compromises the integrity of bacterial cell walls causing lysis of the bacteria.

Lysozymes are ubiquitous as the first line of immune defense against microbes in animals. They exert bactericidal action through antimicrobial peptide activity and peptidoglycan hydrolysis. Gram-negative bacteria developed several weapons to battle lysozymes, including inhibitors of c-type lysozymes in the MliC/PliC family and the Neisseria adhesin complex protein (ACP). Until the recent discovery of ACP, no proteinaceous lysozyme inhibitors were reported for the genus Neisseria, including the important human pathogen N. gonorrhoeae.

Investigators at Oregon State University (Corvallis, USA) have changed this picture. In a paper published in the July 5, 2018, online edition of the journal PLOS Pathogens, they described a previously unrecognized gonococcal virulence mechanism involving a protein encoded by the open reading frame ngo1063 that acted to counteract c-type lysozyme and provided a competitive advantage to the microorganism in a gonorrhea mouse model. They named this protein SliC for "surface-exposed lysozyme inhibitor of c-type lysozyme."

Although SliC displayed low overall primary sequence similarity to the MliC/PliC inhibitors, it was found to have a parallel inhibitory mechanism. The investigators showed that SliC was a surface-displayed lipoprotein in N. gonorrhoeae and, through its lysozyme-blocking function, played a critical role in colonization of genital tract mucosae during infection in the female gonorrhea mouse model.

"The infections very often are silent," said senior author Dr. Aleksandra Sikora, assistant professor of pharmacy at Oregon State University. "Up to 50% of infected women do not have symptoms, but those asymptomatic cases can still lead to some very severe consequences for the patient's reproductive health, miscarriage or premature delivery. This is the first time an animal model has been used to demonstrate a lysozyme inhibitor's role in gonorrhea infection. Together, all of our experiments show how important the lysozyme inhibitor is. This is very exciting."

Related Links:
Oregon State University


New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.