We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Use of Nanoparticles Developed for Targeted Drug Delivery

By LabMedica International staff writers
Posted on 26 Jun 2018
The innovative use of metal-organic framework nanoparticles has enabled the development of a delivery system for therapeutic proteins that selectively targets tumor cells.

Metal-organic frameworks (MOFs) are a class of crystalline materials that consist of coordination bonds between transition-metal cations and multidentate organic linkers. More...
MOFs are made by linking inorganic and organic units by strong bonds (reticular synthesis), and the structure of MOFs is characterized by an open framework that can be porous. MOFs are known for their extraordinarily high surface areas, tunable pore size, and adjustable internal surface properties. The flexibility with which the constituents’ geometry, size, and functionality can be varied has led to more than 20,000 different MOFs being reported and studied within the past decade.

Current strategies for transporting protein therapeutic agents face substantial challenges owing to various biological barriers, including susceptibility to protein degradation and denaturation, poor cellular uptake, and low transduction efficiency into the cytosol.

To counter these difficulties, investigators at Pennsylvania State University (State College, USA) developed a biomimetic nanoparticle platform for systemic and intracellular delivery of proteins. Using a biocompatible strategy, they caged guest proteins in the matrix of metal–organic frameworks with high efficiency (up to about 94%) and high loading content (the protein toxin gelonin at up to about 50 times those achieved by surface conjunction), and the nanoparticles were further decorated with tumor cell extracellular vesicle (EV) membranes with an efficiency as high as nearly 97%.

The nanoparticles, which were selectively transported to the tumor site due to the property of homotypic targeting engendered by the EV membrane coating, were taken up by the cancer cells through endocytosis. Once inside the cells, the higher acidity of the cancer cell’s intracellular transport vesicles degraded the MOF nanoparticles, which released the toxic protein into the cytosol and killed the cells.

Results of in vitro and in vivo studies published in the May 29, 2018, online edition of the Journal of the American Chemical Society revealed that the EV-like nanoparticles not only protected proteins against protease digestion and evaded immune system clearance but also selectively targeted homotypic tumor sites and promoted tumor cell uptake and autonomous release of the guest protein after internalization. Using this novel nanoparticle transport mechanism to deliver the bioactive therapeutic protein gelonin in a mouse model system significantly inhibited tumor growth and increased therapeutic efficacy14-fold.

“We designed a strategy to take advantage of the extracellular vesicles derived from tumor cells," said senior author Dr. Siyang Zheng, associate professor of biomedical and electrical engineering at Pennsylvania State University. "We remove 99% of the contents of these extracellular vesicles and then use the membrane to wrap our metal-organic framework nanoparticles. If we can get our extracellular vesicles from the patient, through biopsy or surgery, then the nanoparticles will seek out the tumor through a process called homotypic targeting. Our metal-organic framework has very high loading capacity, so we do not need to use a lot of the particles and that keeps the general toxicity low."

Related Links:
Pennsylvania State University


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.