We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Model Demonstrates Link between Phospholipids and Atherosclerosis

By LabMedica International staff writers
Posted on 19 Jun 2018
Print article
Image: The aorta of a mouse model of atherosclerosis on a high-fat diet for 12 months (top) has significantly more plaques (bright red) than the aorta of the same type of mouse that also produces the anti-inflammatory E06 antibody (bottom) (Photo courtesy of the University of California, San Diego).
Image: The aorta of a mouse model of atherosclerosis on a high-fat diet for 12 months (top) has significantly more plaques (bright red) than the aorta of the same type of mouse that also produces the anti-inflammatory E06 antibody (bottom) (Photo courtesy of the University of California, San Diego).
A fragment of an antibody known to block the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibit the proinflammatory properties of oxidized phospholipids (OxPL) was shown to prevent atherosclerosis in a mouse model.

Oxidized phospholipids are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes. Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown.

Investigators at the University of California, San Diego (USA) previously cloned the IgM natural antibody E06, which bound to the phosphocholine headgroup of OxPL, and blocked the uptake of OxLDL by macrophages and inhibited the proinflammatory properties of OxPL.

In a study designed to determine the role of OxPL in vivo in the context of atherogenesis, the investigators generated transgenic mice that lacked the LDL receptor, which made them prone to develop atherosclerosis. In addition, these mice expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter.

The investigators reported in the June 6, 2018, online edition of the journal Nature that the E06-scFv fragment was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signaling. Compared to control mice lacking the LDL receptor, the E06-scFv mice had 28–57% less atherosclerosis after four, seven, and even 12 months on a 1% high-cholesterol diet.

Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv improved the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Ultimately, the E06-scFv fragment prolonged life of the mice as measured over 15 months.

"Wherever you get inflammation, you get OxPL," said senior author Dr. Joseph Witztum, professor of medicine at the University of California, San Diego. "It does not mean OxPL is the cause, but it definitely plays a major role. We showed for the first time that OxPL are truly pro-inflammatory and pro-atherogenic and, moreover, that they can be counteracted by E06 antibody. This suggests that therapies that inactivate OxPL may be beneficial for reducing inflammation in general and in particular in the case of diseases such as atherosclerosis, aortic stenosis, and hepatic steatosis."

Related Links:
University of California, San Diego

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.