We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Epigenetic Variation May Be Responsible for Hereditary Disorders

By LabMedica International staff writers
Posted on 07 Jun 2018
Print article
Image: The image shows a DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development, cancer, and some hereditary disorders (Photo courtesy of Wikimedia Commons).
Image: The image shows a DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development, cancer, and some hereditary disorders (Photo courtesy of Wikimedia Commons).
Genomics researchers have suggested that some hereditary disorders are caused by epigenetic variation that modifies gene expression rather than by traditional mutation that changes the sequence of DNA bases.

Certain human traits such as neurodevelopmental disorders (NDs) and congenital anomalies (CAs) are believed to be primarily genetic in origin. However, even after whole-genome sequencing (WGS), a substantial fraction of such disorders remain unexplained.

To solve this mystery, investigators at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) proposed that some cases of ND–CA were likely caused by aberrant DNA methylation leading to epigenetic variation (epivariation) that disrupted genome function.

To test this theory, the investigators compared DNA methylation profiles from 489 individuals with ND–CAs to 1534 samples from control subjects. In the May 25, 2018, online edition of the journal Nature Communications, they reported that epivariations frequently occurred in the human genome. De novo epivariations were significantly enriched in ND-CA cases, while RNAseq analysis showed that epivariations often had an impact on gene expression comparable to loss-of-function mutations.

"Our study suggests that these epigenetic mutations are a significant contributor to human disease," said senior author Dr. Andrew Sharp, associate professor of genetic and genomic sciences at the Icahn School of Medicine. "These findings can open up a whole new world in what we know about disease and genetic profiling. Investigating DNA methylation when profiling genomes for disease mutations could help us uncover causative defects in congenital and neurodevelopmental diseases that have eluded us for years."

Related Links:
Icahn School of Medicine at Mount Sinai

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.