We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




LncRNAs Linked to Prostate Cancer Progression

By LabMedica International staff writers
Posted on 06 Jun 2018
A long non-coding RNA has been linked to androgen receptor signaling and the growth and development of prostate cancer.

Long non-coding RNAs (lncRNAs) are considered to be non-protein coding transcripts longer than 200 nucleotides. More...
This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study. Their name notwithstanding, long non-coding RNAs (lncRNAs) have been found to actually encode synthesis of small polypeptides that can fine-tune the activity of critical cellular components.

The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Investigators at the University of Michigan (Ann Arbor, USA) employed an integrative transcriptomic analysis of prostate cancer cell lines and tissues to identify the lncRNA ARLNC1 (AR-regulated long noncoding RNA 1) as being strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by the AR protein, but ARLNC1 stabilized the AR transcript via RNA–RNA interaction.

The investigators further reported in the May 28, 2018, online edition of the journal Nature Genetics that in mouse models, overexpression of ARLNC1 prompted formation of large tumors, while knockdown of this lncRNA suppressed AR expression, global AR signaling, and prostate cancer growth. These findings supported a role for ARLNC1 in potentiating AR signaling during prostate cancer progression and identified ARLNC1 as a novel therapeutic target.

"The androgen receptor is an important target in prostate cancer. Understanding that target is important. This study identifies a feedback loop that we could potentially disrupt as an alternative to blocking the androgen receptor directly," said senior author Dr. Arul Chinnaiyan, professor of pathology and urology at the University of Michigan. "At the end of the day, you are creating or stabilizing more androgen receptor signaling in general and driving this oncogenic pathway forward. We are envisioning a potential therapy against ARLNC1 in combination with therapy to block the androgen receptor - which would hit the target and also this positive feedback loop. There are a number of these lncRNAs that we do not understand how they functionally work. Some of them will certainly be very useful as cancer biomarkers and we think a subset is important in biological processes."

Related Links:
University of Michigan


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
Sample Transportation System
Tempus1800 Necto
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.